On Robin’s criterion for the Riemann hypothesis

YoungJu Choie[1]; Nicolas Lichiardopol[2]; Pieter Moree[3]; Patrick Solé[4]

  • [1] Dept of Mathematics POSTECH Pohang, Korea 790-784
  • [2] ESSI Route des Colles 06 903 Sophia Antipolis, France
  • [3] Max-Planck-Institut für Mathematik Vivatsgasse 7 D-53111 Bonn, Germany
  • [4] CNRS-I3S ESSI Route des Colles 06 903 Sophia Antipolis, France

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 2, page 357-372
  • ISSN: 1246-7405

Abstract

top
Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality σ ( n ) : = d | n d < e γ n log log n is satisfied for n 5041 , where γ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if n 37 does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that n must be divisible by a fifth power > 1 . As consequence we obtain that RH holds true iff every natural number divisible by a fifth power > 1 satisfies Robin’s inequality.

How to cite

top

Choie, YoungJu, et al. "On Robin’s criterion for the Riemann hypothesis." Journal de Théorie des Nombres de Bordeaux 19.2 (2007): 357-372. <http://eudml.org/doc/249981>.

@article{Choie2007,
abstract = {Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality $\sigma (n):=\sum _\{d|n\}d&lt;e^\{\gamma \}n\log \log n$ is satisfied for $n\ge 5041$, where $\gamma $ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if $n\ge 37$ does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that $n$ must be divisible by a fifth power $&gt;1$. As consequence we obtain that RH holds true iff every natural number divisible by a fifth power $&gt;1$ satisfies Robin’s inequality.},
affiliation = {Dept of Mathematics POSTECH Pohang, Korea 790-784; ESSI Route des Colles 06 903 Sophia Antipolis, France; Max-Planck-Institut für Mathematik Vivatsgasse 7 D-53111 Bonn, Germany; CNRS-I3S ESSI Route des Colles 06 903 Sophia Antipolis, France},
author = {Choie, YoungJu, Lichiardopol, Nicolas, Moree, Pieter, Solé, Patrick},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Riemann hypothesis; Robin's criterion; Euler constant},
language = {eng},
number = {2},
pages = {357-372},
publisher = {Université Bordeaux 1},
title = {On Robin’s criterion for the Riemann hypothesis},
url = {http://eudml.org/doc/249981},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Choie, YoungJu
AU - Lichiardopol, Nicolas
AU - Moree, Pieter
AU - Solé, Patrick
TI - On Robin’s criterion for the Riemann hypothesis
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 2
SP - 357
EP - 372
AB - Robin’s criterion states that the Riemann Hypothesis (RH) is true if and only if Robin’s inequality $\sigma (n):=\sum _{d|n}d&lt;e^{\gamma }n\log \log n$ is satisfied for $n\ge 5041$, where $\gamma $ denotes the Euler(-Mascheroni) constant. We show by elementary methods that if $n\ge 37$ does not satisfy Robin’s criterion it must be even and is neither squarefree nor squarefull. Using a bound of Rosser and Schoenfeld we show, moreover, that $n$ must be divisible by a fifth power $&gt;1$. As consequence we obtain that RH holds true iff every natural number divisible by a fifth power $&gt;1$ satisfies Robin’s inequality.
LA - eng
KW - Riemann hypothesis; Robin's criterion; Euler constant
UR - http://eudml.org/doc/249981
ER -

References

top
  1. T. M. Apostol, Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976. Zbl0335.10001MR434929
  2. K. Briggs, Abundant numbers and the Riemann hypothesis. Experiment. Math. 15 (2006), 251–256. Zbl1149.11041MR2253548
  3. J. H. Bruinier, Primzahlen, Teilersummen und die Riemannsche Vermutung. Math. Semesterber. 48 (2001), 79–92. Zbl0982.11052MR1950214
  4. S. R. Finch, Mathematical constants. Encyclopedia of Mathematics and its Applications 94, Cambridge University Press, Cambridge, 2003. Zbl1054.00001MR2003519
  5. J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis. Amer. Math. Monthly 109 (2002), 534–543. Zbl1098.11005MR1908008
  6. J.-L. Nicolas, Petites valeurs de la fonction d’Euler. J. Number Theory 17 (1983), 375–388. Zbl0521.10039
  7. S. Ramanujan, Collected Papers. Chelsea, New York, 1962. 
  8. S. Ramanujan, Highly composite numbers. Annotated and with a foreword by J.-L. Nicolas and G. Robin. Ramanujan J. 1 (1997), 119–153. Zbl0917.11043MR1606180
  9. G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. (9) 63 (1984), 187–213. Zbl0516.10036MR774171
  10. J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers. Illinois J. Math. 6 (1962), 64–94. Zbl0122.05001MR137689
  11. G. Tenenbaum, Introduction to analytic and probabilistic number theory. Cambridge Studies in Advanced Mathematics 46, Cambridge University Press, Cambridge, 1995. Zbl0831.11001MR1342300

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.