L 2 vector bundle valued forms and the Laplace-Beltrami operator

Francesco Ricci

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 119-135
  • ISSN: 0041-8994

How to cite

top

Ricci, Francesco. "$L^2$ vector bundle valued forms and the Laplace-Beltrami operator." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 119-135. <http://eudml.org/doc/108034>.

@article{Ricci1986,
author = {Ricci, Francesco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {vector bundle valued forms; Riemannian manifold; spectrum},
language = {eng},
pages = {119-135},
publisher = {Seminario Matematico of the University of Padua},
title = {$L^2$ vector bundle valued forms and the Laplace-Beltrami operator},
url = {http://eudml.org/doc/108034},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Ricci, Francesco
TI - $L^2$ vector bundle valued forms and the Laplace-Beltrami operator
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 119
EP - 135
LA - eng
KW - vector bundle valued forms; Riemannian manifold; spectrum
UR - http://eudml.org/doc/108034
ER -

References

top
  1. [AV] A. Andreotti - E. Vesentini, Sopra un teorema di Kodaira, Ann. Sc. Norm. Sup. Pisa, (3), 15 (1961), pp. 283-309. Zbl0108.16604MR141140
  2. [CV] E. Calabi - E. Vesentini, On compact locally symmetric Kähler manifolds, Ann. Math., 71 (1960), pp. 472-507. Zbl0100.36002MR111058
  3. [Do1] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, in the volume in memory of V. K. Patodi, Indian Math. Soc. and Tata Institute. Zbl0479.53035
  4. [Do2] J. Dodziuk, Vanishing theorems for square integrable harmonic forms, Proc. Indian Acad. Sci., Mat. Sci., 90 (1981), pp. 21-27. Zbl0479.53035MR653943
  5. [Do3] J. Dodziuk, L2 harmonic forms on complete manifolds, in: Seminar on Differential Geometry, S. T. Yau ed., Ann. of Math. Studies, 102, Princeton U.P., Princeton N.J., 1982. Zbl0484.53033
  6. [Ee] J. Eells, Elliptic operators on manifolds, Proc. Summer Course in Complex Analysis, vol. 1, I.C.T.P., Trieste, 1976, pp. 95-152. Zbl0349.58008MR482861
  7. [EL] J. Eells - L. Lemaire, Selected topics in harmonic maps, Amer. Math. Soc., Rhode Island, 1983. Zbl0515.58011MR703510
  8. [ES] J. Eells - J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), pp. 109-160. Zbl0122.40102MR164306
  9. [Ga] M.P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc., 78 (1955), pp. 426-444. Zbl0064.34303MR68888
  10. [Gi] G. Gigante, Remarks on holomorphic vector fields on non-compact manifolds, Rend. Sem. Mat. Univ. Padova, 52 (1974), pp. 211-218. Zbl0311.53059MR382703
  11. [GW] R.E. Green - H. Wu, Harmonic forms on non compact Riemannian and Kähler manifolds, Michigan Math. J., 28 (1981), pp. 63-81. Zbl0477.53058MR600415
  12. [Hö] L. Hörmander, Existence theorems for ∂-operator by L2 methods, Acta Math., 113 (1965), pp. 89-152. Zbl0158.11002
  13. [Ka] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0148.12601MR407617
  14. [Ve] E. Vesentini, Lectures on Convexity of Complex Manifolds and Cohomology Vanishing Theorems, Tata Institute, Bombay, 1967. Zbl0206.36603MR232016
  15. [Ya] S.T. Yau, Survey on partial differential equations in differential geometry, in: Seminar on Differential Geometry, S. T. Yau ed., Ann. of Math. Studies, 102, Princeton U.P., Princeton N.J., 1982. Zbl0478.53001MR645729
  16. [We] R.O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York-Heidelberg-Berlin, 1980. Zbl0435.32004MR608414

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.