vector bundle valued forms and the Laplace-Beltrami operator
Rendiconti del Seminario Matematico della Università di Padova (1986)
- Volume: 76, page 119-135
- ISSN: 0041-8994
Access Full Article
topHow to cite
topRicci, Francesco. "$L^2$ vector bundle valued forms and the Laplace-Beltrami operator." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 119-135. <http://eudml.org/doc/108034>.
@article{Ricci1986,
author = {Ricci, Francesco},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {vector bundle valued forms; Riemannian manifold; spectrum},
language = {eng},
pages = {119-135},
publisher = {Seminario Matematico of the University of Padua},
title = {$L^2$ vector bundle valued forms and the Laplace-Beltrami operator},
url = {http://eudml.org/doc/108034},
volume = {76},
year = {1986},
}
TY - JOUR
AU - Ricci, Francesco
TI - $L^2$ vector bundle valued forms and the Laplace-Beltrami operator
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 119
EP - 135
LA - eng
KW - vector bundle valued forms; Riemannian manifold; spectrum
UR - http://eudml.org/doc/108034
ER -
References
top- [AV] A. Andreotti - E. Vesentini, Sopra un teorema di Kodaira, Ann. Sc. Norm. Sup. Pisa, (3), 15 (1961), pp. 283-309. Zbl0108.16604MR141140
- [CV] E. Calabi - E. Vesentini, On compact locally symmetric Kähler manifolds, Ann. Math., 71 (1960), pp. 472-507. Zbl0100.36002MR111058
- [Do1] J. Dodziuk, Vanishing theorems for square-integrable harmonic forms, in the volume in memory of V. K. Patodi, Indian Math. Soc. and Tata Institute. Zbl0479.53035
- [Do2] J. Dodziuk, Vanishing theorems for square integrable harmonic forms, Proc. Indian Acad. Sci., Mat. Sci., 90 (1981), pp. 21-27. Zbl0479.53035MR653943
- [Do3] J. Dodziuk, L2 harmonic forms on complete manifolds, in: Seminar on Differential Geometry, S. T. Yau ed., Ann. of Math. Studies, 102, Princeton U.P., Princeton N.J., 1982. Zbl0484.53033
- [Ee] J. Eells, Elliptic operators on manifolds, Proc. Summer Course in Complex Analysis, vol. 1, I.C.T.P., Trieste, 1976, pp. 95-152. Zbl0349.58008MR482861
- [EL] J. Eells - L. Lemaire, Selected topics in harmonic maps, Amer. Math. Soc., Rhode Island, 1983. Zbl0515.58011MR703510
- [ES] J. Eells - J. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), pp. 109-160. Zbl0122.40102MR164306
- [Ga] M.P. Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc., 78 (1955), pp. 426-444. Zbl0064.34303MR68888
- [Gi] G. Gigante, Remarks on holomorphic vector fields on non-compact manifolds, Rend. Sem. Mat. Univ. Padova, 52 (1974), pp. 211-218. Zbl0311.53059MR382703
- [GW] R.E. Green - H. Wu, Harmonic forms on non compact Riemannian and Kähler manifolds, Michigan Math. J., 28 (1981), pp. 63-81. Zbl0477.53058MR600415
- [Hö] L. Hörmander, Existence theorems for ∂-operator by L2 methods, Acta Math., 113 (1965), pp. 89-152. Zbl0158.11002
- [Ka] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0148.12601MR407617
- [Ve] E. Vesentini, Lectures on Convexity of Complex Manifolds and Cohomology Vanishing Theorems, Tata Institute, Bombay, 1967. Zbl0206.36603MR232016
- [Ya] S.T. Yau, Survey on partial differential equations in differential geometry, in: Seminar on Differential Geometry, S. T. Yau ed., Ann. of Math. Studies, 102, Princeton U.P., Princeton N.J., 1982. Zbl0478.53001MR645729
- [We] R.O. Wells, Differential Analysis on Complex Manifolds, Springer-Verlag, New York-Heidelberg-Berlin, 1980. Zbl0435.32004MR608414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.