Combining stability with symmetry properties in bifurcation problems

G. Cicogna

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 137-148
  • ISSN: 0041-8994

How to cite

top

Cicogna, G.. "Combining stability with symmetry properties in bifurcation problems." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 137-148. <http://eudml.org/doc/108035>.

@article{Cicogna1986,
author = {Cicogna, G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {dynamical system; bifurcation; symmetry group},
language = {eng},
pages = {137-148},
publisher = {Seminario Matematico of the University of Padua},
title = {Combining stability with symmetry properties in bifurcation problems},
url = {http://eudml.org/doc/108035},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Cicogna, G.
TI - Combining stability with symmetry properties in bifurcation problems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 137
EP - 148
LA - eng
KW - dynamical system; bifurcation; symmetry group
UR - http://eudml.org/doc/108035
ER -

References

top
  1. [1] S.R. Bernfeld - P. Negrini - L. Salvadori, Quasi-invariant manifolds, stability, and generalized Hopf bifurcation, Ann. Mat. Pura Appl., (IV), CXXX (1982), p. 1070. Zbl0493.34030MR663967
  2. [2] S.R. Bernfeld - L. Salvadori - F. Visentin: Hopf bifurcation and related stability problems for periodic differential systems, to be published. Zbl0595.34048
  3. [3] G. Cicogna, Symmetry breakdown from bifurcation, Lett. Nuovo Cim., 31 (1981), p. 600. MR631456
  4. [4] G. Cicogna, Bifurcation and symmetries, Boll. Un. Mat. Ital., 1-B (1982), p. 787. Zbl0502.58024MR666605
  5. [5] G. Cicogna, Bifurcation from topology and symmetry arguments, Boll. Un. Mat. Ital., 3-A (1984), p. 131. Zbl0535.58011MR739200
  6. [6] M. Golubitsky, The Bénard problem, symmetry, and the lattice of isotropy subgroups, in: Bifurcation Theory, Mechanics and Physics (C. P. Bruter et al., ed.s), p. 225, Reidel, Dordrecht, 1983. Zbl0542.76054MR726253
  7. [7] M. Golubitsky - E. Ihrig, Pattern selection with O3 symmetry, Physica, 13D (1984), p. 1. Zbl0581.22021MR775276
  8. [8] M. Golubitsky - I. Stewart, Hopf bifurcation in the presence of symmetry, Arch. Rat. Mech. Anal., 87 (1985), p. 107. Zbl0588.34030MR765596
  9. [9] G. Iooss - D.D. Joseph, Elementary Stability and Bifurcation Theory, U.T.M., Springer-Verlag, New York, 1980. Zbl0691.34002MR636256
  10. [10] L. Michel, Nonlinear group action. Smooth action of compact Lie groups on manifolds, in: Statistical Mechanics and Field Theory (R. N. Sen, C. Weil ed.s), p. 133, Israel Univ. Press, Jerusalem, 1972. Zbl0255.57019
  11. [11] L. Michel, Symmetry defects and broken symmetry, Rev. Mod. Phys., 52 (1980), p. 617. MR578143
  12. [12] P. Negrini - L. Salvadori, Attractivity and Hopf bifurcation, Nonlin. Anal., T.M.A., 3 (1979), p. 87. Zbl0423.34062MR520476
  13. [13] L. Salvadori, An approach to bifurcation via stability theory, Proc. of the Conf. on Recent Advances in Nonlinear Analysis and Differential Equations, Madras, 1981. Zbl0542.34036
  14. [14] L. Salvadori, Exchange of stability and bifurcation for periodic differential systems, Proc. of VI Int. Conf. on Trends in Theory and Practice of Nonlinear Analysis, North-HollandElsevier (in printing). Zbl0577.34044MR817517
  15. [15] L. Salvadori, Lectures notes at the 9th Summer School of Mathematical Physics (Ravello, 1984), and at the Meeting on Nonlinear Oscillations o Conservative Systems (Venezia, 1985). 
  16. [16] D.H. Sattinger, Topics in Stability and Bifurcation Theory, Lecture Notes in Mathematics n. 309,Springer-verlag, Berlin, 1972. Zbl0248.35003MR463624
  17. [17] D.H. Sattinger, Group Theoretic Methods in Bifurcation Theory, Lecture Notes in Mathematics n. 762,Springer-Verlag, Berlin, 1979. Zbl0414.58013MR551626
  18. [18] D.H. Sattinger, Branching in the Presence of Symmetry, CBMS-NSF, Reg. Conf. on Appl. Math., SIAM, Philadelphia, 1983. Zbl0516.58016MR764932
  19. [19] A. Vanderbauwhede, An abstract setting for the study of the Hopf bifurcation, Nonlin. Anal., T.M.A., 4 (1980), p. 547. Zbl0437.47044MR574372
  20. [20] A. Vanderbauwhede, Local Bifurcation and Symmetry, Pitman Research Notes in Mathematics, vol. 75, Boston, 1982. Zbl0539.58022MR697724
  21. [21] A. Vanderbauwhede, Stability of bifurcating equilibria and the principle of reduced stability, pp. 209-223, in: Bifurcation Theory and Applications CIME Lect. Notes, Montecatini 1983 (ed. L. Salvadori), Lecture Notes in Mathematics n. 1057, Springer-Verlag, Berlin, 1984. Zbl0541.58038MR753302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.