Complex interpolation for 2 N Banach spaces

Giovanni Dore; Davide Guidetti; Alberto Venni

Rendiconti del Seminario Matematico della Università di Padova (1986)

  • Volume: 76, page 1-36
  • ISSN: 0041-8994

How to cite

top

Dore, Giovanni, Guidetti, Davide, and Venni, Alberto. "Complex interpolation for $2^N$ Banach spaces." Rendiconti del Seminario Matematico della Università di Padova 76 (1986): 1-36. <http://eudml.org/doc/108040>.

@article{Dore1986,
author = {Dore, Giovanni, Guidetti, Davide, Venni, Alberto},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {complex interpolation for several Banach spaces; vector valued holomorphic functions; Poisson integrals; complex method of Calderòn; dual spaces},
language = {eng},
pages = {1-36},
publisher = {Seminario Matematico of the University of Padua},
title = {Complex interpolation for $2^N$ Banach spaces},
url = {http://eudml.org/doc/108040},
volume = {76},
year = {1986},
}

TY - JOUR
AU - Dore, Giovanni
AU - Guidetti, Davide
AU - Venni, Alberto
TI - Complex interpolation for $2^N$ Banach spaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1986
PB - Seminario Matematico of the University of Padua
VL - 76
SP - 1
EP - 36
LA - eng
KW - complex interpolation for several Banach spaces; vector valued holomorphic functions; Poisson integrals; complex method of Calderòn; dual spaces
UR - http://eudml.org/doc/108040
ER -

References

top
  1. [1] J. Bergh - J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin-Heidelberg-New York, 1976. Zbl0344.46071MR482275
  2. [2] J.I. Bertolo - D.L. Fernandez, On the connection between the real and the complex interpolation method for several Banach spaces, Rend. Sem. Mat. Univ. Padova, 66 (1982), pp. 193-209. Zbl0517.46053MR664582
  3. [3] A.P. Caldfrón, Intermediate spaces and interpolation, the complex method, Studia Math., 24 (1964), pp. 113-190. Zbl0204.13703MR167830
  4. [4] R.R. Coifman - M. Cwikel - R. Rochberg - Y. Sagher - G. Weiss, The complex method for interpolation of operators acting on families of Banach spaces, Lecture Notes in Math., no. 779, Springer-Verlag, Berlin-Heidelberg-New York, 1980, pp. 123-153. Zbl0427.46049MR576042
  5. [5] R.R. Coifman - M. Cwikel - R. Rochberg - Y. Sagher - G. Weiss, A theory of complex interpolation for families of Banach spaces, Adv. in Math., 43 (1982), pp. 203-229. Zbl0501.46065MR648799
  6. [6] M. Cwikel - S. Fisher, Complex interpolation spaces on multiply-connected domains, Adv. in Math., 48 (1983), pp. 286-294. Zbl0518.46059MR704387
  7. [7] N. Dinculeanu, Linear operations on Zp-spaces, in Vector and Operator Valued Measures and Applications (ed. by D. H. Tucker and H. B. Maynard), Academic Press Inc., New York-London, 1973, pp. 109-124. Zbl0293.46032MR341066
  8. [8] G. Dore - D. Guidetti - A. Venni, Some properties of the sum and the intersection of normed spaces, Atti Sem. Mat. Fis. Univ. Modena, 31 (1982), pp. 325-331. Zbl0541.46060MR742678
  9. [9] A. Favini, Su una estensione del metodo d'interpolazione complesso, Rend. Sem. Mat. Univ. Padova, 47 (1972), pp. 243-298. Zbl0248.46032MR324439
  10. [10] D.L. Fernandez, Interpolation for 2n-tuples of Banach spaces, Studia Math., 65 (1979), pp. 175-201. Zbl0462.46051
  11. [11] D.L. Fernandez, On the interpolation of 2n Banach spaces. - 1: The Lions-Peetre interpolation method, Bul. Inst. Politehn. Iaşi Sect., I 26, no. 1-2 (1980), pp. 49-54. Zbl0517.46052MR608496
  12. [12] D.L. Fernandez, On the duality of interpolation spaces of several Banach spaces, Acta Sci. Math. (Szeged), 44 (1982), pp. 43-51. Zbl0487.46048MR660511
  13. [13] D.L. Fernandez, An extension of the complex method of interpolation, Boll. Un. Mat. Ital., (5), B-18 (1981), pp. 721-732. Zbl0481.46033MR641731
  14. [14] S.G. Kre - L.I. Nikolova, Holomorphic functions in a family of Banach spaces, and interpolation, Soviet Math. Dokl., 21 (1980), pp.131-134 ( = Dokl. Akad. Nauk SSSR, 250 (1980), pp. 547-550). Zbl0462.46052MR557785
  15. [15] S.G. Kre - L.I. Nikolova, Complex interpolation for families of Baanch spaces, Ukrainian Math. J., 34 (1982), pp.26-36 ( = Ukrain. Mat. Ž., 34 (1982), pp. 31-42). Zbl0502.46054MR647928
  16. [16] S.G. Kre - Ju. I. Petunin- E.M. Semenov, Interpolation of linear operators, Amer. Math. Soc., Providence, R.I., 1982. MR649411
  17. [17] J.L. Lions, Une construction d'espaces d'interpolation, C. R. Acad. Sci. Paris Sér. A-B, 251 (1960), pp. 1853-1855. Zbl0118.10702MR119093
  18. [18] L.I. Nikolova, Kompleksnyĭ metod interpoljacii dlja neskol'kih prostranstv, C. R. Acad. Bulgare Sci., 31 (1978), pp. 1523-1526. Zbl0408.41001MR985883
  19. [19] R.S. Phillips, On weakly compact subsets of a Banach space, Amer. J. Math., 65 (1943), pp. 108-136. Zbl0063.06212MR7938
  20. [20] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin Inc., New York-Amsterdam, 1969. Zbl0177.34101MR255841
  21. [21] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Zbl0387.46032MR503903
  22. [22] A. Zygmund, Trigonometric Series, 2nd ed., Cambridge University Press, Cambridge, 1968. Zbl0367.42001MR236587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.