Optimal feedback for perturbed bilinear control problems

Gh. Aniculăesei

Rendiconti del Seminario Matematico della Università di Padova (1987)

  • Volume: 77, page 57-67
  • ISSN: 0041-8994

How to cite

top

Aniculăesei, Gh.. "Optimal feedback for perturbed bilinear control problems." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 57-67. <http://eudml.org/doc/108070>.

@article{Aniculăesei1987,
author = {Aniculăesei, Gh.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Necessary optimality conditions; optimal control problem in infinite dimension; bilinear equation; existence of a feedback law},
language = {eng},
pages = {57-67},
publisher = {Seminario Matematico of the University of Padua},
title = {Optimal feedback for perturbed bilinear control problems},
url = {http://eudml.org/doc/108070},
volume = {77},
year = {1987},
}

TY - JOUR
AU - Aniculăesei, Gh.
TI - Optimal feedback for perturbed bilinear control problems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 77
SP - 57
EP - 67
LA - eng
KW - Necessary optimality conditions; optimal control problem in infinite dimension; bilinear equation; existence of a feedback law
UR - http://eudml.org/doc/108070
ER -

References

top
  1. [1] G. Anicul, Necessary optimality conditions in bilinear control problems, Ricerche Math., 32 (1983), pp. 167)185. Zbl0558.49009MR766677
  2. [2] G. Anicul, Optimal feedback controls for a class of bilinear systems, Boll. Un. Mat. Ital., (6) 3-B (1984), pp. 737-748. Zbl0561.49016MR774474
  3. [3] G. Anicul - G. Popa, Hamilton-Jaboci equations and synthesis of optimal bilinear control in Hilbert spaces (in print). Zbl0647.93039
  4. [4] J.M. Ball - J.E. Marsden - M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), pp. 575-597. Zbl0485.93015MR661034
  5. [5] V. Barbu, Optimal feedback controls for a class of nonlinear distributed parameter systems, SIAM J. Control Optim., 21 (1983), pp. 871-894. Zbl0524.49015MR719518
  6. [6] V. Barbu, Optimal control of variational inequalities, Pittman, London, 1984. Zbl0574.49005MR742624
  7. [7] V. Barbu, Optimal control for free boundary problems (to appear in SIAM J. Control Optim.). MR848653
  8. [8] G. Di Blasio, Synthesis of optimal bilinear controls, J. Math. Anal. Appl., 88, 1 (1982), pp. 143-156. Zbl0487.49007MR661408
  9. [9] F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), pp. 247-262. Zbl0307.26012MR367131
  10. [10] M.G. Crandall - J.A. Nohel, An abstract functional differential equation and a related nonlinear Volterra equation, Israel J. Math., 29 (1978), pp. 313-328. Zbl0373.34035MR477910
  11. [11] A. Friedman, Nonlinear optimal control problems for parabolic equations, SIAM J. Control Optim., 22 (1984), pp. 805-816. Zbl0551.49003MR755145
  12. [12] A. Friedman - D. Yaniro, Optimal control for the dam problem, Appl. Math. Optim., 13 (1985), pp. 59-78. Zbl0569.49013MR778421
  13. [13] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, 1969. MR259693
  14. [14] M. Slemrod, Stabilization of bilinear control systems with applications to noneonservative problems in elasticity, SIAM J. Control Optim., 16 (1978), pp. 131-141. Zbl0388.93037MR469432

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.