Optimal feedback for perturbed bilinear control problems
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 77, page 57-67
 - ISSN: 0041-8994
 
Access Full Article
topHow to cite
topAniculăesei, Gh.. "Optimal feedback for perturbed bilinear control problems." Rendiconti del Seminario Matematico della Università di Padova 77 (1987): 57-67. <http://eudml.org/doc/108070>.
@article{Aniculăesei1987,
	author = {Aniculăesei, Gh.},
	journal = {Rendiconti del Seminario Matematico della Università di Padova},
	keywords = {Necessary optimality conditions; optimal control problem in infinite dimension; bilinear equation; existence of a feedback law},
	language = {eng},
	pages = {57-67},
	publisher = {Seminario Matematico of the University of Padua},
	title = {Optimal feedback for perturbed bilinear control problems},
	url = {http://eudml.org/doc/108070},
	volume = {77},
	year = {1987},
}
TY  - JOUR
AU  - Aniculăesei, Gh.
TI  - Optimal feedback for perturbed bilinear control problems
JO  - Rendiconti del Seminario Matematico della Università di Padova
PY  - 1987
PB  - Seminario Matematico of the University of Padua
VL  - 77
SP  - 57
EP  - 67
LA  - eng
KW  - Necessary optimality conditions; optimal control problem in infinite dimension; bilinear equation; existence of a feedback law
UR  - http://eudml.org/doc/108070
ER  - 
References
top- [1] G. Anicul, Necessary optimality conditions in bilinear control problems, Ricerche Math., 32 (1983), pp. 167)185. Zbl0558.49009MR766677
 - [2] G. Anicul, Optimal feedback controls for a class of bilinear systems, Boll. Un. Mat. Ital., (6) 3-B (1984), pp. 737-748. Zbl0561.49016MR774474
 - [3] G. Anicul - G. Popa, Hamilton-Jaboci equations and synthesis of optimal bilinear control in Hilbert spaces (in print). Zbl0647.93039
 - [4] J.M. Ball - J.E. Marsden - M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), pp. 575-597. Zbl0485.93015MR661034
 - [5] V. Barbu, Optimal feedback controls for a class of nonlinear distributed parameter systems, SIAM J. Control Optim., 21 (1983), pp. 871-894. Zbl0524.49015MR719518
 - [6] V. Barbu, Optimal control of variational inequalities, Pittman, London, 1984. Zbl0574.49005MR742624
 - [7] V. Barbu, Optimal control for free boundary problems (to appear in SIAM J. Control Optim.). MR848653
 - [8] G. Di Blasio, Synthesis of optimal bilinear controls, J. Math. Anal. Appl., 88, 1 (1982), pp. 143-156. Zbl0487.49007MR661408
 - [9] F.H. Clarke, Generalized gradients and applications, Trans. Amer. Math. Soc., 205 (1975), pp. 247-262. Zbl0307.26012MR367131
 - [10] M.G. Crandall - J.A. Nohel, An abstract functional differential equation and a related nonlinear Volterra equation, Israel J. Math., 29 (1978), pp. 313-328. Zbl0373.34035MR477910
 - [11] A. Friedman, Nonlinear optimal control problems for parabolic equations, SIAM J. Control Optim., 22 (1984), pp. 805-816. Zbl0551.49003MR755145
 - [12] A. Friedman - D. Yaniro, Optimal control for the dam problem, Appl. Math. Optim., 13 (1985), pp. 59-78. Zbl0569.49013MR778421
 - [13] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod and Gauthier-Villars, 1969. MR259693
 - [14] M. Slemrod, Stabilization of bilinear control systems with applications to noneonservative problems in elasticity, SIAM J. Control Optim., 16 (1978), pp. 131-141. Zbl0388.93037MR469432
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.