Existence and attractivity results for a class of degenerate functional-parabolic problems
M. Badii; J. I. Diaz; A. Tesei
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 78, page 109-124
- ISSN: 0041-8994
Access Full Article
topHow to cite
topBadii, M., Diaz, J. I., and Tesei, A.. "Existence and attractivity results for a class of degenerate functional-parabolic problems." Rendiconti del Seminario Matematico della Università di Padova 78 (1987): 109-124. <http://eudml.org/doc/108072>.
@article{Badii1987,
author = {Badii, M., Diaz, J. I., Tesei, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {existence; uniqueness; asymptotical behaviour},
language = {eng},
pages = {109-124},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence and attractivity results for a class of degenerate functional-parabolic problems},
url = {http://eudml.org/doc/108072},
volume = {78},
year = {1987},
}
TY - JOUR
AU - Badii, M.
AU - Diaz, J. I.
AU - Tesei, A.
TI - Existence and attractivity results for a class of degenerate functional-parabolic problems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 78
SP - 109
EP - 124
LA - eng
KW - existence; uniqueness; asymptotical behaviour
UR - http://eudml.org/doc/108072
ER -
References
top- [1] D.G. Aronson - M.G. Crandall - L.A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. TMA, 6 (1982), pp. 1001-1022. Zbl0518.35050MR678053
- [2] P. Baras, Compacité de l'operateur f → u solution d'une equation non linéaire (du/dt) + Au = f, C. R. Acad. Sci. Paris, Sér. A, 286 (1978). pp. 1113-1116. Zbl0389.47030
- [3] J. Bebernes - R. ELY, Existence and invariance for parabolic functional equations, Nonlinear Anal. TMA, 7 (1983), pp. 1225-1236. Zbl0544.35084MR721408
- [4] H. Brézis, New results concerning monotone operators and nonlinear semigroups, in « Analysis of nonlinear problems », pp. 2-27 (Research Institute for Mathematical Sciences, Kyoto University, 1974). MR493537
- [5] H. Brézis - A. FRIEDMAN, Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl., 62 (1983), pp. 73-97. Zbl0527.35043MR700049
- [6] H. Brézis - W.A. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Japan, 25 (1973), pp. 565-590. Zbl0278.35041MR336050
- [7] P. DeMOTTONI - A. SCHIAFFINO - A. TESEI, Attractivity properties of nonnegative solutions for a class of nonlinear degenerate parabolic problems, Ann. Mat. Pura Appl., 136 (1984), pp. 35-48. Zbl0556.35083MR765914
- [8] J.I. Diaz - J. Hernández, On the existence of a free boundary for a class of reaction-diffusion systems, SIAM J. Math. Anal., 15 (1984), pp. 670-685. Zbl0556.35126MR747428
- [9] H. Engler, Invariant sets for functional differential equations in Banach spaces and applications, Nonlinear Anal. TMA, 5 (1981), pp. 1225-1243. Zbl0478.34051MR636733
- [10] H. Engler, Functional differential equations in Banach spaces: growth and decay of solutions, J. für Reine u. Angew. Math., 322 (1981), pp. 53-73. Zbl0436.34058MR603026
- [11] M.E. Gurtin - R.C. Maccamy, On the diffusion of biological populations, Math. Biosci., 33 (1977), pp. 35-49. Zbl0362.92007MR682594
- [12] L.A. Peletier - A. Tesei, Global bifurcation and attractivity of stationary solutions of a degenerate diffusion equation, preprint (1985). Zbl0624.35006
- [13] V.P. Politjukov, On the theory of upper and lower solutions and the solvability of quasilinear integro-differential equations, Math. USSR Sbornik, 35 (1979), pp. 499-507. Zbl0431.45010MR512008
- [14] M.A. Pozio - A. Tesei, Support properties of solutions for a class of degenerate parabolic problems, preprint (1984). Zbl0862.35049MR869102
- [15] M.A. Pozio - A. Tesei, Degenerate parabolic problems in population dynamics, Japan J. Appl. Math. (to appear). MR839335
- [16] M. Schatzman, Stationary solutions and asymptotic behaviour of a quasilinear degenerate parabolic equation, Indiana Univ. Math. J., 33 (1984), pp. 1-30. Zbl0554.35064MR726104
- [17] A. Schiaffino, On a diffusion Volterra equation, Nonlinear Anal. TMA, 3 (1979), pp. 595-600. Zbl0445.45015MR541870
- [18] A. Schiaffino - A. Tesei, Asymptotic stability properties for nonlinear diffusion Volterra equations, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 67 (1979), pp. 227-232. Zbl0463.45008MR622797
- [19] A. Schiaffino - A. Tesei, Monotone methods and attractivity results for Volterra integropartial differential equations, Proc. Royal Soc. Edinburgh, 89A (1981), pp. 135-142. Zbl0474.45004MR628134
- [20] J. Spruck, Uniqueness in a diffusion model of population biology, Comm. in Partial Differential Equations, 8 (1983), pp. 1605-1620. Zbl0534.35055MR729195
- [21] G. Stampacchia, On some regular multiple integral problems in the calculus of variations, Comm. Pure Appl. Math., 16 (1963), pp. 383-421. Zbl0138.36903MR155209
- [22] A. Tesei, Stability properties for partial Volterra integrodifferential equations, Ann. Mat. Pura Appl., 126 (1980), pp. 103-115. Zbl0463.45009MR612355
- [23] L. Tsai, On integro-differential equations of parabolic type, Bull. Inst. Math. Acad. Sinica, 9 (1981), pp. 311-320. Zbl0465.45011MR625724
- [24] V. Volterra, Leçons sur la théorie mathématique de la lutte pour la vie (Paris: Gauthier-Villars, 1931). Zbl0002.04202
- [25] I.I. Vrabie, The nonlinear version of Pazy's local existence theorem, Israel J. Math., 32 (1979), pp. 221-235. Zbl0406.34064MR531265
- [26] I.I. Vrabie, Compactness methods for an abstract nonlinear Volterra integrodifferential equation, Nonlinear Analysis TMA, 5 (1981), pp . 355-371. Zbl0459.45011MR611648
- [27] I.I. Vrabie, An existence result for a class of nonlinear evolution equations in Banach spaces, Nonlinear Analysis TMA, 6 (1982), pp. 711-722. Zbl0493.34050MR664148
- [28] Y. Yamada, On a certain class of semilinear Volterra diffusion equations, J. Math. Anal. Appl., 88 (1982), pp. 433-451. Zbl0515.45012MR667070
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.