Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation
Carlo Marchioro; Enrico Pagani
Rendiconti del Seminario Matematico della Università di Padova (1987)
- Volume: 78, page 125-143
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMarchioro, Carlo, and Pagani, Enrico. "Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation." Rendiconti del Seminario Matematico della Università di Padova 78 (1987): 125-143. <http://eudml.org/doc/108073>.
@article{Marchioro1987,
author = {Marchioro, Carlo, Pagani, Enrico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {distribution functions; stationary solutions; relativistic Poisson-Vlasov equation; stable; relativistic Maxwell-Vlasov model},
language = {eng},
pages = {125-143},
publisher = {Seminario Matematico of the University of Padua},
title = {Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation},
url = {http://eudml.org/doc/108073},
volume = {78},
year = {1987},
}
TY - JOUR
AU - Marchioro, Carlo
AU - Pagani, Enrico
TI - Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 78
SP - 125
EP - 143
LA - eng
KW - distribution functions; stationary solutions; relativistic Poisson-Vlasov equation; stable; relativistic Maxwell-Vlasov model
UR - http://eudml.org/doc/108073
ER -
References
top- [1] A.A. Arsen'ev, Global existence of a weak solution of Vlasov's system of equations, U.R.S.S. Comput. Math. and Math. Phys., 15 (1) (1975), pp. 131-143. MR371322
- [2] A.A. Arsen'ev, Existence and uniqueness of the classical solutions of Vlasov's system of equations, U.R.S.S. Comput. Math. and Math. Phys., 15 (5) (1975), pp. 252-258. Zbl0345.35083MR395633
- [3] C. Bardos - P. Degond, Global existence for the Vlasov-Poisson equation in three space variables with small initial data, C. R. Acad. Sc. Paris, 297, Sez. 1 (1983), p. 131. Zbl0593.35076MR732496
- [4] J. Batt, Global symmetric solutions of the initial-value problem in stellar dynamics, J. Diff. Eq., 25 (1977), pp. 342-364. Zbl0366.35020MR487082
- [5] J. Batt, The nonlinear Vlasov-Poisson system of partial differential equations in stellar dynamics, Publ. C.N.E.R. Math. Pures Appl. Année 83, vol. 5, fasc. 2 (1983), pp. 1-30.
- [6] J. Cooper, Galerkin approximations for the one-dimensional Vlasov-Poisson equation, Math. Meth. in the Appl. Sci., 5 (1983), pp. 516-529. Zbl0541.65084MR723605
- [7] J. Cooper - A. Klimas, Boundary value problem for the Vlasov-Xaxwell equations in one dimension, J. Math. Anal. Appl., 75 (1980), pp. 306-329. Zbl0454.35075MR581821
- [8] S.R. De Groot - C.G. Van Weert - W.A. Van Leeuwen, Relativistic Kinetic Theory. Principles and Application, North Holland, Amsterdam (1980). MR635279
- [9] C.S. Gardner, Bound on the energy available from a plasma, Phys. Fluids, 6 (1963), pp. 839-840. MR152330
- [10] R. Glassey - J. SCHAEFFER, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), pp. 459-473. Zbl0582.35110MR815195
- [11] R. Glassey - W. Strauss, Singularity formation in a collisionless plasma could occurr only at high velocities, Arch. Rat. Mech. Anal. (in print). Zbl0595.35072
- [12] D.D. Holm - J.E. Marsden - T. Ratiu - A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Physics Reports, 123 (1985), pp. 1-116. Zbl0717.76051MR794110
- [13] E. Horst, On the classical solutions of the initial-value problem for the unmodified nonlinear Vlasov equation I, II, Math. Meth. Appl. Sci., 3 (1981), pp. 229-248; 4 (1982), pp. 19-32. Zbl0463.35071
- [14] E. Horst - R. Hunze, Weak solution of the initial-value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., 6 (1984), pp. 262-279. Zbl0556.35022MR751745
- [15] R. Illner - H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., 1 (1979), pp. 530-554. Zbl0415.35076MR548686
- [16] C. Marchioro - M. PULVIRENTI, Some considerations on the nonlinear stability of stationary planar Euler flows, Comm. Math. Phys., 100 (1985). pp. 343-354. Zbl0625.76060MR802550
- [17] C. Marchioro - M. Pulvirenti, A note on the nonlinear stability of a spatial symmetric Vlasov-Poisson flow, Math. Meth. Appl. Sci. (in print). Zbl0609.35008MR845931
- [18] J.E. Marsden - A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica, 4D (1982), pp. 394-406. Zbl1194.35463MR657741
- [19] H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Lecture Notes in Mathematics, 1048 (Springer-Verlag, Berlin, 1984), pp. 60-110. Zbl0575.76120MR740721
- [20] H. Neunzert, Approximation methods for the nonmodified Vlasov-Poisson system, Proceedings of the « Workshop on Math. Aspects of Fluid and Plasma Dynamics » (Trieste, Italy, May 30 - June 2, 1984), edited by C. Cercignani, S. Rionero, M. Tessarotto, pp. 439-455.
- [21] M.N. Rosenbluth, Topics in microinstabilities, in Advanced Plasma Physics, M. Rosenbluth, ed. (Academic Press, New York, 1964). MR170672
- [22] S. Ukai - T. OKABE, On classical solutions in the large in time of two dimensional Vlasov's equation, Osaka J. Math., 15 (1978), pp. 245-261. Zbl0405.35002MR504289
- [23] N.G. Van Kampen - B.V. Felderhof, Theoretical Methods in Plasma Physics, North Holland, Amsterdam (1967). Zbl0159.29601
- [24] E. Weibel, L'equation de Vlasov dans la théorie spéciale de la relativité, Plasma Phys., 9 (1967), pp. 665-670.
- [25] S. Wollman, The spherically symmetric Vlasov-Poisson system, J. Diff. Equations, 35 (1980), pp. 30-35. Zbl0402.76089MR556789
- [26] S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Commun. Pure Appl. Math., 37 (1984), pp. 457-462. Zbl0592.45010MR745326
- [27] S. Wollman, Global in time solutions of the two dimensional Vlasov-Poisson system, Commun. Pure Appl. Math., 33 (1980), pp. 173-197. Zbl0437.45023MR562549
- [28] P. Degond, Local existence of solutions of the Maxwell-Vlasov equation and convergence to the Vlasov-Poisson equation for infinite light velocity, Int. Rep.117, Centre de Mathématiques Appliquées, École Polytéchnique, Paris (1984).
- [29] J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Commun. Math. Phys., 104 (1986), pp. 403-421. Zbl0597.35109MR840744
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.