Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation

Carlo Marchioro; Enrico Pagani

Rendiconti del Seminario Matematico della Università di Padova (1987)

  • Volume: 78, page 125-143
  • ISSN: 0041-8994

How to cite

top

Marchioro, Carlo, and Pagani, Enrico. "Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation." Rendiconti del Seminario Matematico della Università di Padova 78 (1987): 125-143. <http://eudml.org/doc/108073>.

@article{Marchioro1987,
author = {Marchioro, Carlo, Pagani, Enrico},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {distribution functions; stationary solutions; relativistic Poisson-Vlasov equation; stable; relativistic Maxwell-Vlasov model},
language = {eng},
pages = {125-143},
publisher = {Seminario Matematico of the University of Padua},
title = {Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation},
url = {http://eudml.org/doc/108073},
volume = {78},
year = {1987},
}

TY - JOUR
AU - Marchioro, Carlo
AU - Pagani, Enrico
TI - Nonlinear stability of a spatially symmetric solution of the relativistic Poisson-Vlasov equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1987
PB - Seminario Matematico of the University of Padua
VL - 78
SP - 125
EP - 143
LA - eng
KW - distribution functions; stationary solutions; relativistic Poisson-Vlasov equation; stable; relativistic Maxwell-Vlasov model
UR - http://eudml.org/doc/108073
ER -

References

top
  1. [1] A.A. Arsen'ev, Global existence of a weak solution of Vlasov's system of equations, U.R.S.S. Comput. Math. and Math. Phys., 15 (1) (1975), pp. 131-143. MR371322
  2. [2] A.A. Arsen'ev, Existence and uniqueness of the classical solutions of Vlasov's system of equations, U.R.S.S. Comput. Math. and Math. Phys., 15 (5) (1975), pp. 252-258. Zbl0345.35083MR395633
  3. [3] C. Bardos - P. Degond, Global existence for the Vlasov-Poisson equation in three space variables with small initial data, C. R. Acad. Sc. Paris, 297, Sez. 1 (1983), p. 131. Zbl0593.35076MR732496
  4. [4] J. Batt, Global symmetric solutions of the initial-value problem in stellar dynamics, J. Diff. Eq., 25 (1977), pp. 342-364. Zbl0366.35020MR487082
  5. [5] J. Batt, The nonlinear Vlasov-Poisson system of partial differential equations in stellar dynamics, Publ. C.N.E.R. Math. Pures Appl. Année 83, vol. 5, fasc. 2 (1983), pp. 1-30. 
  6. [6] J. Cooper, Galerkin approximations for the one-dimensional Vlasov-Poisson equation, Math. Meth. in the Appl. Sci., 5 (1983), pp. 516-529. Zbl0541.65084MR723605
  7. [7] J. Cooper - A. Klimas, Boundary value problem for the Vlasov-Xaxwell equations in one dimension, J. Math. Anal. Appl., 75 (1980), pp. 306-329. Zbl0454.35075MR581821
  8. [8] S.R. De Groot - C.G. Van Weert - W.A. Van Leeuwen, Relativistic Kinetic Theory. Principles and Application, North Holland, Amsterdam (1980). MR635279
  9. [9] C.S. Gardner, Bound on the energy available from a plasma, Phys. Fluids, 6 (1963), pp. 839-840. MR152330
  10. [10] R. Glassey - J. SCHAEFFER, On symmetric solutions of the relativistic Vlasov-Poisson system, Comm. Math. Phys., 101 (1985), pp. 459-473. Zbl0582.35110MR815195
  11. [11] R. Glassey - W. Strauss, Singularity formation in a collisionless plasma could occurr only at high velocities, Arch. Rat. Mech. Anal. (in print). Zbl0595.35072
  12. [12] D.D. Holm - J.E. Marsden - T. Ratiu - A. Weinstein, Nonlinear stability of fluid and plasma equilibria, Physics Reports, 123 (1985), pp. 1-116. Zbl0717.76051MR794110
  13. [13] E. Horst, On the classical solutions of the initial-value problem for the unmodified nonlinear Vlasov equation I, II, Math. Meth. Appl. Sci., 3 (1981), pp. 229-248; 4 (1982), pp. 19-32. Zbl0463.35071
  14. [14] E. Horst - R. Hunze, Weak solution of the initial-value problem for the unmodified nonlinear Vlasov equation, Math. Meth. Appl. Sci., 6 (1984), pp. 262-279. Zbl0556.35022MR751745
  15. [15] R. Illner - H. Neunzert, An existence theorem for the unmodified Vlasov equation, Math. Meth. Appl. Sci., 1 (1979), pp. 530-554. Zbl0415.35076MR548686
  16. [16] C. Marchioro - M. PULVIRENTI, Some considerations on the nonlinear stability of stationary planar Euler flows, Comm. Math. Phys., 100 (1985). pp. 343-354. Zbl0625.76060MR802550
  17. [17] C. Marchioro - M. Pulvirenti, A note on the nonlinear stability of a spatial symmetric Vlasov-Poisson flow, Math. Meth. Appl. Sci. (in print). Zbl0609.35008MR845931
  18. [18] J.E. Marsden - A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica, 4D (1982), pp. 394-406. Zbl1194.35463MR657741
  19. [19] H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, Lecture Notes in Mathematics, 1048 (Springer-Verlag, Berlin, 1984), pp. 60-110. Zbl0575.76120MR740721
  20. [20] H. Neunzert, Approximation methods for the nonmodified Vlasov-Poisson system, Proceedings of the « Workshop on Math. Aspects of Fluid and Plasma Dynamics » (Trieste, Italy, May 30 - June 2, 1984), edited by C. Cercignani, S. Rionero, M. Tessarotto, pp. 439-455. 
  21. [21] M.N. Rosenbluth, Topics in microinstabilities, in Advanced Plasma Physics, M. Rosenbluth, ed. (Academic Press, New York, 1964). MR170672
  22. [22] S. Ukai - T. OKABE, On classical solutions in the large in time of two dimensional Vlasov's equation, Osaka J. Math., 15 (1978), pp. 245-261. Zbl0405.35002MR504289
  23. [23] N.G. Van Kampen - B.V. Felderhof, Theoretical Methods in Plasma Physics, North Holland, Amsterdam (1967). Zbl0159.29601
  24. [24] E. Weibel, L'equation de Vlasov dans la théorie spéciale de la relativité, Plasma Phys., 9 (1967), pp. 665-670. 
  25. [25] S. Wollman, The spherically symmetric Vlasov-Poisson system, J. Diff. Equations, 35 (1980), pp. 30-35. Zbl0402.76089MR556789
  26. [26] S. Wollman, An existence and uniqueness theorem for the Vlasov-Maxwell system, Commun. Pure Appl. Math., 37 (1984), pp. 457-462. Zbl0592.45010MR745326
  27. [27] S. Wollman, Global in time solutions of the two dimensional Vlasov-Poisson system, Commun. Pure Appl. Math., 33 (1980), pp. 173-197. Zbl0437.45023MR562549
  28. [28] P. Degond, Local existence of solutions of the Maxwell-Vlasov equation and convergence to the Vlasov-Poisson equation for infinite light velocity, Int. Rep.117, Centre de Mathématiques Appliquées, École Polytéchnique, Paris (1984). 
  29. [29] J. Schaeffer, The classical limit of the relativistic Vlasov-Maxwell system, Commun. Math. Phys., 104 (1986), pp. 403-421. Zbl0597.35109MR840744

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.