Constant mean curvature surfaces in 4 -space forms

Jost-Hinrich Eschenburg; Renato de Azevedo Tribuzy

Rendiconti del Seminario Matematico della Università di Padova (1988)

  • Volume: 79, page 185-202
  • ISSN: 0041-8994

How to cite

top

Eschenburg, Jost-Hinrich, and Tribuzy, Renato de Azevedo. "Constant mean curvature surfaces in $4$-space forms." Rendiconti del Seminario Matematico della Università di Padova 79 (1988): 185-202. <http://eudml.org/doc/108094>.

@article{Eschenburg1988,
author = {Eschenburg, Jost-Hinrich, Tribuzy, Renato de Azevedo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {isothermal coordinates; isometric immersions; Riemannian surface; parallel mean curvature vector},
language = {eng},
pages = {185-202},
publisher = {Seminario Matematico of the University of Padua},
title = {Constant mean curvature surfaces in $4$-space forms},
url = {http://eudml.org/doc/108094},
volume = {79},
year = {1988},
}

TY - JOUR
AU - Eschenburg, Jost-Hinrich
AU - Tribuzy, Renato de Azevedo
TI - Constant mean curvature surfaces in $4$-space forms
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 79
SP - 185
EP - 202
LA - eng
KW - isothermal coordinates; isometric immersions; Riemannian surface; parallel mean curvature vector
UR - http://eudml.org/doc/108094
ER -

References

top
  1. [1] F.J. Almgren, Some interior regularity theorems for minimal surfaces and an extension of Bernstein's theorem, Ann. of Math., 84 (1966), pp. 277-292. Zbl0146.11905MR200816
  2. [2] W. Blaschke, Einführung in die Differentialgeometrie, Springer (1950). Zbl0041.28804MR43502
  3. [3] R.L. Bryant, Conformal and minimal immersions of compact surfaces into the 4-sphere, J. Diff. Geom., 17 (1982), pp. 455-473. Zbl0498.53046MR679067
  4. [4] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Diff. Geom., 1 (1967), pp. 111-125. Zbl0171.20504MR233294
  5. [5] S.S. Chern, On the minimal immersions of the two-sphere in a space of constant curvature, Problems in Analysis, ed. Gunning, Princeton, N. J. (1970), pp. 27-40. Zbl0217.47601MR362151
  6. [6] S.S. Chern, On surfaces of constant mean curvature in a three-dimensional space of constant curvature, Geometric Dynamics, Springer L.N. in Mathematics, 1007 (1981), pp. 104-108. Zbl0521.53006MR730266
  7. [7] J.H. Eschenburg - I.V. Guadalupe - R. Tribuzy, The fundamental equations of minimal surfaces in CP2, Math. Ann., 270 (1985), pp. 571-598. Zbl0536.53056MR776173
  8. [8] I.V. Guadalupe - C. Gutierrez - J. Sotomayor - R. Tribuzy, Principal lines on surfaces minimally immersed in constantly curved 4-spaces, Preprint IMPA (1985). Zbl0633.53010
  9. [9] H. Hopf, Differential geometry in the large (Stanford lectures, 1956), Springer L.N. in Mathematics, 1000 (1983). Zbl0526.53002MR707850
  10. [10] G.R. Jensen - M. RIGOLI, Minimal surfaces in spheres by the method of moving frames, PreprintUniversité de Nancy I (1983). Zbl0706.53008
  11. [11] R. Lashof - S. SMALE, On the immersion of manifolds in Euclidean space, Ann. of Math., 68 (1959), pp. 562-583. Zbl0097.38805MR103478
  12. [12] B. Lawson, Complete minimal surfaces in S3, Ann. of Math., 92 (1970), pp. 335-374. Zbl0205.52001MR270280
  13. [13] L. Rodriguez - I. V. GUADALUPE, Normal curvature of surfaces in space forms, Pacific J. of Math., 106 (1983), pp. 95-106. Zbl0515.53044MR694674
  14. [14] E.A. Ruh, Minimal immersions of the 2-sphere in S4, Proc. Am. Math. Soc., 28 (1971), pp. 218-222. Zbl0212.54003MR271880
  15. [15] M. Spivak, A Comprehensive Introduction to Differential Geometry, vol. IV, Publish or Perish (1975). Zbl0306.53001MR394452
  16. [16] R. Tribuzy - I. V. GUADALUPE, Minimal immersions of surfaces into 4-dimensional space forms, Rend. Sem. Mat. Univ. Padova, 73 (1985), pp. 1-13. Zbl0573.53036MR799891
  17. [17] S.T. Yau, Submanifolds with constant mean curvature, I, Am. J. of Math., 96 (1974), pp. 346-366. Zbl0304.53041MR370443

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.