Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence
M. L. C. Fernandes; F. Zanolin
Rendiconti del Seminario Matematico della Università di Padova (1988)
- Volume: 80, page 95-116
- ISSN: 0041-8994
Access Full Article
topHow to cite
topFernandes, M. L. C., and Zanolin, F.. "Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence." Rendiconti del Seminario Matematico della Università di Padova 80 (1988): 95-116. <http://eudml.org/doc/108130>.
@article{Fernandes1988,
author = {Fernandes, M. L. C., Zanolin, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Lyapunov-like functions; repeller},
language = {eng},
pages = {95-116},
publisher = {Seminario Matematico of the University of Padua},
title = {Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence},
url = {http://eudml.org/doc/108130},
volume = {80},
year = {1988},
}
TY - JOUR
AU - Fernandes, M. L. C.
AU - Zanolin, F.
TI - Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 80
SP - 95
EP - 116
LA - eng
KW - Lyapunov-like functions; repeller
UR - http://eudml.org/doc/108130
ER -
References
top- [1] H. Amann, Gewöhnliche Differentialgleichungen, Walter de Gruyter, Berlin, 1983. Zbl0823.34001MR713040
- [2] J.-P. Aubin - A. CELLINA, Differential inclusions, Springer-Verlag, Berlin and New York, 1984. Zbl0538.34007MR755330
- [3] S.R. Bernfeld - R.D. Driver - V. Lakshmikantham, Uniqueness for ordinary differential equations, Math. Systems Theory, 9 (1976), pp. 359-367. Zbl0329.34003MR447673
- [4] J.M. Bownds, A uniqueness theorem for y' = f (x, y) using a certain factorization of f, J. Differential Equations, 7 (1970), pp. 227-231. Zbl0194.11701MR254305
- [5] G. Butler - H.I. Freedman - P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), pp. 425-430. Zbl0603.34043MR822433
- [6] F. Cafiero, Sui teoremi d'unicità relativi ad un'equazione differenziale ordinata del primo ordine, Giorn. Mat. Battaglini, 78 (1948), pp. 193-215. Zbl0032.41103MR32083
- [7] K.W. Chang - F.A. Howes, Nonlinear singular perturbation phenomena: theory and applications, Springer-Verlag, Berlin and New York, 1984. Zbl0559.34013MR764395
- [8] M.G. Crandall, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer. Math. Soc., 36 (1972), pp. 151-155. Zbl0271.34084MR306586
- [9] M.L.C. Fernandes, Invariant sets and periodic solutions for differential systems, Magister Ph. Thesis, I.S.A.S., Trieste, 1986.
- [10] M.L.C. Fernandes - F. Zanolin, Remarks on strongly flow-invariant sets, J. Math. Anal. Appl., 128 (1987), pp. 176-188. Zbl0657.34045MR915976
- [11] M.L.C. Fernandes - F. Zanolin, On periodic solutions, in a given set, for differential systems (preprint). Zbl0725.34039
- [12] M.L.C. Fernandes - F. Zanolin, Repelling conditions for boundary sets using Liapunov-like functions. - II: Persistence and periodic solutions (preprint). Zbl0719.34092MR1061888
- [13] A. Fonda, Uniformly persistent semi-dynamical systems, Proc. Amer. Math. Soc. (to appear). Zbl0667.34065MR958053
- [14] H.I. Freedman - P. Waltman, Mathematical analysis of some three species food-chain models, Math. Biosci., 33 (1977), pp. 257-276. Zbl0363.92022MR682262
- [15] R.R. Gaines - J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977. Zbl0339.47031MR637067
- [16] T. Gard, A generalization of the Naguno uniqueness criterion, Proc. Amer. Math. Soc., 70 (1978), pp. 166-172. Zbl0389.34003MR470288
- [17] T.C. Gard, Strongly flow-invariant sets, Appl. Analysis, 10 (1980), pp. 285-293. Zbl0438.34039MR580813
- [18] T.C. Gard - T.G. Hallam, Persistence in food webs-1. Lotka Volterra food chains, Bull. Math. Biol., 41 (1979), pp. 877-891. Zbl0422.92017MR640001
- [19] P.M. Gruber, Aspects of convexity and its applications, Expo. Math., 2 (1984), pp. 47-83. Zbl0525.52001MR783125
- [20] T.G. Hallam, A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc., 169 (1972), pp. 49-57. Zbl0257.34012MR306611
- [21] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. Zbl0125.32102MR171038
- [22] J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math., 91 (1981), pp. 233-240. Zbl0449.34039MR619966
- [23] V. Hutson, A theorem on average Liapunov functions, Monatsh. Math., 98 (1984), pp. 267-275. Zbl0542.34043MR776353
- [24] M.A. Krasnosel'skii, The operator of translation along trajectories of of differential equations, Amer. Math. Soc., Providence, R.I., 1968. MR223640
- [25] V. Lakshmikantham - S. Leela, Differential and integral inequalities, vol. I, Academic Press, New York, 1969. Zbl0177.12403
- [26] J.P. La Salle, The stability of dynamical systems, Reg. Conf. Ser. in Math., SIAM, Philadelp ia, 1976.
- [27] J. Massera, Contributions to stability theory, Ann. Math., 64 (1956), pp. 182-206. Zbl0070.31003MR79179
- [28] J. Mawhin, Functional analysis and boundary value problems, in « Studies in ordinary differential equations », vol. 14 (J. K. Hale, ed.), The Math. Assoc. of America, U.S.A., 1977. Zbl0371.34017MR473303
- [29] J. Mawhin, Topological degree methods in nonlinear boundary value problems, Reg. Conf. Ser. in Math., CBMS no. 40, Amer. Math. Soc., Providence, R.I., 1979. Zbl0414.34025MR525202
- [30] M. Nagumo, Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung, Japan J. Math., 3 (1926), pp. 107-112. Zbl52.0438.01JFM52.0438.01
- [31] M. Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), pp. 551-559. Zbl0061.17204MR15180
- [32] L.C. Piccinini - G. Stampacchia - G. Vidossich, Ordinary differential equations in Rn, problems and methods, Springer-Verlag, Berlin and New York, 1984. Zbl0535.34001MR740539
- [33] R.M. Redheffer - W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Appl. Analysis, 5 (1975), pp. 149-161. Zbl0353.34067MR470401
- [34] R. Reissig - G. Sansone - R. Conti, Qualitative Theorie nichtlinearer Differentialgleichungen, Cremonese, Roma, 1963. Zbl0114.04302MR158121
- [35] N. Rouche - P. Habets - M. Laloy, Stability theory by Liapunov's Direct Method, Springer-Verlag, Berlin and New York, 1977. Zbl0364.34022MR450715
- [36] L. Salvadori, Famiglie ad un parametro di funzioni di Liapunov, nello studio della stabilità, Symposia Math., 6 (1971), pp. 309-330. Zbl0243.34099MR279396
- [37] P. Schuster - K. Sigmund - R. Wolff, Dynamical systems under constant organization. - III: Cooperative and competitive behavior of hypercycles, J. Differential Equations, 32 (1979), pp. 357-368. Zbl0384.34029MR535168
- [38] M. Turinici, A singular perturbation result for a system of ordinary differential equations, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (1983), pp. 273-282. Zbl0532.34040MR724153
- [39] G. Vidossich, Solutions of Hallam's problem on the terminal comparison principle for ordinary differential inequalities, Trans. Amer. Math. Soc., 220 (1976), pp. 115-132. Zbl0346.34007MR412524
- [40] P. Volkmann, Über die positive Invaranz einer abgeschlossenen Teilmenge eines Banachschen Raumes bezüglich der Differentialgleichung u' = f(t, u), J. reine angew. Math., 285 (1976), pp. 59-65. Zbl0326.34081MR415033
- [41] D.V.V. Wend, Existence and uniqueness of solutions of ordinary differential equations, Proc. Amer. Math. Soc., 23 (1969), pp. 27-33. Zbl0183.35604MR245879
- [42] J.A. Yorke, Invariance for ordinary differential equations, Math. Systems Theory, 1 (1967), pp. 353-372. Zbl0155.14201MR226105
- [43] T. Yoshizawa, Stability theory by Liapunov's second method, The Math. Soc. of Japan, Tokyo, 1966. Zbl0144.10802MR208086
- [44] F. Zanolin, Bound sets, periodic solutions and flow-invariance for ordinary differential equations in Rn some remarks, in « Colloquium on Topological Methods in BPVs for ODEs », ISAS, Rend. Ist. Mat. Univ. Trieste, 19 (1987), pp. 76-92. Zbl0651.34049MR941094
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.