Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence

M. L. C. Fernandes; F. Zanolin

Rendiconti del Seminario Matematico della Università di Padova (1988)

  • Volume: 80, page 95-116
  • ISSN: 0041-8994

How to cite

top

Fernandes, M. L. C., and Zanolin, F.. "Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence." Rendiconti del Seminario Matematico della Università di Padova 80 (1988): 95-116. <http://eudml.org/doc/108130>.

@article{Fernandes1988,
author = {Fernandes, M. L. C., Zanolin, F.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Lyapunov-like functions; repeller},
language = {eng},
pages = {95-116},
publisher = {Seminario Matematico of the University of Padua},
title = {Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence},
url = {http://eudml.org/doc/108130},
volume = {80},
year = {1988},
}

TY - JOUR
AU - Fernandes, M. L. C.
AU - Zanolin, F.
TI - Repelling conditions for boundary sets using Liapunov-like functions. I. - Flow-invariance, terminal value problem and weak persistence
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1988
PB - Seminario Matematico of the University of Padua
VL - 80
SP - 95
EP - 116
LA - eng
KW - Lyapunov-like functions; repeller
UR - http://eudml.org/doc/108130
ER -

References

top
  1. [1] H. Amann, Gewöhnliche Differentialgleichungen, Walter de Gruyter, Berlin, 1983. Zbl0823.34001MR713040
  2. [2] J.-P. Aubin - A. CELLINA, Differential inclusions, Springer-Verlag, Berlin and New York, 1984. Zbl0538.34007MR755330
  3. [3] S.R. Bernfeld - R.D. Driver - V. Lakshmikantham, Uniqueness for ordinary differential equations, Math. Systems Theory, 9 (1976), pp. 359-367. Zbl0329.34003MR447673
  4. [4] J.M. Bownds, A uniqueness theorem for y' = f (x, y) using a certain factorization of f, J. Differential Equations, 7 (1970), pp. 227-231. Zbl0194.11701MR254305
  5. [5] G. Butler - H.I. Freedman - P. Waltman, Uniformly persistent systems, Proc. Amer. Math. Soc., 96 (1986), pp. 425-430. Zbl0603.34043MR822433
  6. [6] F. Cafiero, Sui teoremi d'unicità relativi ad un'equazione differenziale ordinata del primo ordine, Giorn. Mat. Battaglini, 78 (1948), pp. 193-215. Zbl0032.41103MR32083
  7. [7] K.W. Chang - F.A. Howes, Nonlinear singular perturbation phenomena: theory and applications, Springer-Verlag, Berlin and New York, 1984. Zbl0559.34013MR764395
  8. [8] M.G. Crandall, A generalization of Peano's existence theorem and flow-invariance, Proc. Amer. Math. Soc., 36 (1972), pp. 151-155. Zbl0271.34084MR306586
  9. [9] M.L.C. Fernandes, Invariant sets and periodic solutions for differential systems, Magister Ph. Thesis, I.S.A.S., Trieste, 1986. 
  10. [10] M.L.C. Fernandes - F. Zanolin, Remarks on strongly flow-invariant sets, J. Math. Anal. Appl., 128 (1987), pp. 176-188. Zbl0657.34045MR915976
  11. [11] M.L.C. Fernandes - F. Zanolin, On periodic solutions, in a given set, for differential systems (preprint). Zbl0725.34039
  12. [12] M.L.C. Fernandes - F. Zanolin, Repelling conditions for boundary sets using Liapunov-like functions. - II: Persistence and periodic solutions (preprint). Zbl0719.34092MR1061888
  13. [13] A. Fonda, Uniformly persistent semi-dynamical systems, Proc. Amer. Math. Soc. (to appear). Zbl0667.34065MR958053
  14. [14] H.I. Freedman - P. Waltman, Mathematical analysis of some three species food-chain models, Math. Biosci., 33 (1977), pp. 257-276. Zbl0363.92022MR682262
  15. [15] R.R. Gaines - J. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Mathematics, vol. 568, Springer-Verlag, Berlin, 1977. Zbl0339.47031MR637067
  16. [16] T. Gard, A generalization of the Naguno uniqueness criterion, Proc. Amer. Math. Soc., 70 (1978), pp. 166-172. Zbl0389.34003MR470288
  17. [17] T.C. Gard, Strongly flow-invariant sets, Appl. Analysis, 10 (1980), pp. 285-293. Zbl0438.34039MR580813
  18. [18] T.C. Gard - T.G. Hallam, Persistence in food webs-1. Lotka Volterra food chains, Bull. Math. Biol., 41 (1979), pp. 877-891. Zbl0422.92017MR640001
  19. [19] P.M. Gruber, Aspects of convexity and its applications, Expo. Math., 2 (1984), pp. 47-83. Zbl0525.52001MR783125
  20. [20] T.G. Hallam, A comparison principle for terminal value problems in ordinary differential equations, Trans. Amer. Math. Soc., 169 (1972), pp. 49-57. Zbl0257.34012MR306611
  21. [21] P. Hartman, Ordinary differential equations, Wiley, New York, 1964. Zbl0125.32102MR171038
  22. [22] J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math., 91 (1981), pp. 233-240. Zbl0449.34039MR619966
  23. [23] V. Hutson, A theorem on average Liapunov functions, Monatsh. Math., 98 (1984), pp. 267-275. Zbl0542.34043MR776353
  24. [24] M.A. Krasnosel'skii, The operator of translation along trajectories of of differential equations, Amer. Math. Soc., Providence, R.I., 1968. MR223640
  25. [25] V. Lakshmikantham - S. Leela, Differential and integral inequalities, vol. I, Academic Press, New York, 1969. Zbl0177.12403
  26. [26] J.P. La Salle, The stability of dynamical systems, Reg. Conf. Ser. in Math., SIAM, Philadelp ia, 1976. 
  27. [27] J. Massera, Contributions to stability theory, Ann. Math., 64 (1956), pp. 182-206. Zbl0070.31003MR79179
  28. [28] J. Mawhin, Functional analysis and boundary value problems, in « Studies in ordinary differential equations », vol. 14 (J. K. Hale, ed.), The Math. Assoc. of America, U.S.A., 1977. Zbl0371.34017MR473303
  29. [29] J. Mawhin, Topological degree methods in nonlinear boundary value problems, Reg. Conf. Ser. in Math., CBMS no. 40, Amer. Math. Soc., Providence, R.I., 1979. Zbl0414.34025MR525202
  30. [30] M. Nagumo, Eine hinreichende Bedingung für die Unität der Lösung von Differentialgleichungen erster Ordnung, Japan J. Math., 3 (1926), pp. 107-112. Zbl52.0438.01JFM52.0438.01
  31. [31] M. Nagumo, Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen, Proc. Phys.-Math. Soc. Japan, 24 (1942), pp. 551-559. Zbl0061.17204MR15180
  32. [32] L.C. Piccinini - G. Stampacchia - G. Vidossich, Ordinary differential equations in Rn, problems and methods, Springer-Verlag, Berlin and New York, 1984. Zbl0535.34001MR740539
  33. [33] R.M. Redheffer - W. Walter, Flow-invariant sets and differential inequalities in normed spaces, Appl. Analysis, 5 (1975), pp. 149-161. Zbl0353.34067MR470401
  34. [34] R. Reissig - G. Sansone - R. Conti, Qualitative Theorie nichtlinearer Differentialgleichungen, Cremonese, Roma, 1963. Zbl0114.04302MR158121
  35. [35] N. Rouche - P. Habets - M. Laloy, Stability theory by Liapunov's Direct Method, Springer-Verlag, Berlin and New York, 1977. Zbl0364.34022MR450715
  36. [36] L. Salvadori, Famiglie ad un parametro di funzioni di Liapunov, nello studio della stabilità, Symposia Math., 6 (1971), pp. 309-330. Zbl0243.34099MR279396
  37. [37] P. Schuster - K. Sigmund - R. Wolff, Dynamical systems under constant organization. - III: Cooperative and competitive behavior of hypercycles, J. Differential Equations, 32 (1979), pp. 357-368. Zbl0384.34029MR535168
  38. [38] M. Turinici, A singular perturbation result for a system of ordinary differential equations, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 27 (1983), pp. 273-282. Zbl0532.34040MR724153
  39. [39] G. Vidossich, Solutions of Hallam's problem on the terminal comparison principle for ordinary differential inequalities, Trans. Amer. Math. Soc., 220 (1976), pp. 115-132. Zbl0346.34007MR412524
  40. [40] P. Volkmann, Über die positive Invaranz einer abgeschlossenen Teilmenge eines Banachschen Raumes bezüglich der Differentialgleichung u' = f(t, u), J. reine angew. Math., 285 (1976), pp. 59-65. Zbl0326.34081MR415033
  41. [41] D.V.V. Wend, Existence and uniqueness of solutions of ordinary differential equations, Proc. Amer. Math. Soc., 23 (1969), pp. 27-33. Zbl0183.35604MR245879
  42. [42] J.A. Yorke, Invariance for ordinary differential equations, Math. Systems Theory, 1 (1967), pp. 353-372. Zbl0155.14201MR226105
  43. [43] T. Yoshizawa, Stability theory by Liapunov's second method, The Math. Soc. of Japan, Tokyo, 1966. Zbl0144.10802MR208086
  44. [44] F. Zanolin, Bound sets, periodic solutions and flow-invariance for ordinary differential equations in Rn some remarks, in « Colloquium on Topological Methods in BPVs for ODEs », ISAS, Rend. Ist. Mat. Univ. Trieste, 19 (1987), pp. 76-92. Zbl0651.34049MR941094

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.