Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem

A. Salvatore

Rendiconti del Seminario Matematico della Università di Padova (1989)

  • Volume: 81, page 49-63
  • ISSN: 0041-8994

How to cite

top

Salvatore, A.. "Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem." Rendiconti del Seminario Matematico della Università di Padova 81 (1989): 49-63. <http://eudml.org/doc/108146>.

@article{Salvatore1989,
author = {Salvatore, A.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {semilinear wave equation; minimal period; mountain pass theorem},
language = {eng},
pages = {49-63},
publisher = {Seminario Matematico of the University of Padua},
title = {Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem},
url = {http://eudml.org/doc/108146},
volume = {81},
year = {1989},
}

TY - JOUR
AU - Salvatore, A.
TI - Solutions of minimal period of a wave equation via a generalization of a Hofer's theorem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1989
PB - Seminario Matematico of the University of Padua
VL - 81
SP - 49
EP - 63
LA - eng
KW - semilinear wave equation; minimal period; mountain pass theorem
UR - http://eudml.org/doc/108146
ER -

References

top
  1. [1] A. Ambrosetti - G. MANCINI, Solutions of minimal period for a class of convex Hamiltonian systems, Math. Ann., 155 (1981). Zbl0466.70022MR615860
  2. [2] A. Ambrosetti - P. H. RABINOWITZ, Dual variational methods in a critical point theory and applications, J. Funct. Anal., 14 (1973), pp. 345-381. Zbl0273.49063MR370183
  3. [3] P. Bartolo - V. BENCI - D. FORTUNATO: Abstract critical point theorems and applications to some nonlinear problems with « strong » resonance at infinity, Nonlinear Anal., T.M.A., 7 (1983), pp. 981-1012. Zbl0522.58012MR713209
  4. [4] V. Benci, Some applications of the generalized Morse-Conley index, Conferenze del Seminario di Matematica dell'Università di Bari, 217 (1987). Zbl0656.58006MR898735
  5. [5] V. Benci - D. FORTUNATO, The dual method in critical point theory. Multiplicity results for indefinite functionals, Ann. Mat. Pura Appl., 32 (1981), pp. 215-242. Zbl0526.58013MR696044
  6. [6] V. Benci - D. FORTUNATO, Subharmonic solutions of prescribed minimal period for non autonomous differential equations, Edited by G. F. DELL'ANTONIO - B. D'ONOFRIO, World Scientific, Singapore (1987), pp. 83-96. Zbl0663.70028MR902625
  7. [7] H. Brezis, Periodic solutions of nonlinear vibrating strings and duality principles, Bull. Amer. Math. Soc., 3 (1983), pp. 409-426. Zbl0515.35060MR693957
  8. [8] H. Brezis - J.M. Coron - L. Nirenberg, Free vibrations for a nonlinear wave equation and a theorem of P. Rabinowitz, Comm. Pure Appl. Math., 33 (1980), pp. 667-689. Zbl0484.35057MR586417
  9. [9] J.M. Coron, Periodic solution of a nonlinear wave without assumptions of monotonicity, Math. Ann., 252 (1983), pp. 273-285. Zbl0489.35061MR690201
  10. [10] D. Gromoll - W. MEYER, On differentiable functions with isolated critical points, Topology, 8 (1969), pp. 361-369. Zbl0212.28903MR246329
  11. [11] H. Hofer, A note on the topological degree at a critical point of mountain pass-type, Proc. Amer. Math. Soc., 90, 2 (1984), pp. 309-315. Zbl0545.58015MR727256
  12. [12] H. Hofer, A geometric description of the neighbourhood of a critical point given by the mountain-pass theorem, J. London Math. Soc., 31 (1985), pp. 566-570. Zbl0573.58007MR812787
  13. [13] H. Lovicarova, Periodic solutions of a weakly nonlinear wave equation in one dimensional, Czech. Math. J., 19 (1969), pp. 324-342. Zbl0181.10901MR247249
  14. [14] P.H. Rabinowitz, Variational Methods for Nonlinear Eigenvalue Problems, Edited by G. PRODI, Edizione Cremonese, Roma (1974), pp. 141-195. MR464299
  15. [15] P. Rockafeller, Convex Analysis, Princeton University Press (1970). Zbl0193.18401MR274683
  16. [16] A. Salvatore, Solutions of minimal period for a semilinear wave equation, to appear on Ann. Mat. Pura e Appl. Zbl0714.35052MR1042839
  17. [17] G. Tarantello, Solutions with prescribed minimal period for nonlinear vibrating strings, Comm. P.D.E., 12, 9 (1987), pp. 1071-1094. Zbl0628.35007MR888007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.