Existence of -periodic solutions for a class of lagrangian systems
Rendiconti del Seminario Matematico della Università di Padova (1990)
- Volume: 83, page 19-32
- ISSN: 0041-8994
Access Full Article
topHow to cite
topMirenghi, Elvira, and Tucci, Maria. "Existence of $T$-periodic solutions for a class of lagrangian systems." Rendiconti del Seminario Matematico della Università di Padova 83 (1990): 19-32. <http://eudml.org/doc/108178>.
@article{Mirenghi1990,
author = {Mirenghi, Elvira, Tucci, Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {critical points; action; functional; Lagrangian system of differential equations; Lagrangian function},
language = {eng},
pages = {19-32},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence of $T$-periodic solutions for a class of lagrangian systems},
url = {http://eudml.org/doc/108178},
volume = {83},
year = {1990},
}
TY - JOUR
AU - Mirenghi, Elvira
AU - Tucci, Maria
TI - Existence of $T$-periodic solutions for a class of lagrangian systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 83
SP - 19
EP - 32
LA - eng
KW - critical points; action; functional; Lagrangian system of differential equations; Lagrangian function
UR - http://eudml.org/doc/108178
ER -
References
top- [1] P. Bartolo - V. BENCI - D. FORTUNATO, Abstract critical point theorems and applications to some nonlinear problems with « strong » resonance at infinity, Nonlinear Analysis T.M.A., 7 (1983), pp. 981-1012. Zbl0522.58012MR713209
- [2] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math., 34 (1981), pp. 393-432. Zbl0447.34040MR615624
- [3] V. Benci - A. CAPOZZI - D. FORTUNATO, Periodic solutions of Hamiltonian systems with superquadratic potential, Ann. Mat. Pura e Appl., 143 (1986), pp. 1-46. Zbl0632.34036MR859596
- [4] H. Berestycki, Solutions périodiques de systèmes Hamiltoniens, Sém. Bourbaki, 35e année (1982-83), no. 603. Zbl0526.58016MR728984
- [5] A. Capozzi - D. Fortunato - A. Salvatore, Periodic solutions of dynamical systems, Meccanica, 20 (1985), pp. 281-284. Zbl0599.70010MR841217
- [6] A. Capozzi - D. Fortunato - A. Salvatore, Periodic solutions of Lagrangian systems with a bounded potential, J. Math. Anal. and Appl., 124, 2 (1987), pp. 482-494. Zbl0664.34053MR887004
- [7] A. Capozzi - D. Lupo - S. Solimini, On the existence of a nontrivial solution to nonlinear problems at resonance, Nonlinear Analysis T.M.A., 13, 2 (1989), pp. 151-163. Zbl0684.35038MR979038
- [8] A. Capozzi - A. Salvatore, Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Univ. Car., 23, 3 (1982), pp. 415-425. Zbl0507.34035MR677851
- [9] V. Coti Zelati, Periodic solutions of Hamiltonian systems and Morse theory, Atti del Convegno « Recent advances in Hamiltonian systems », L'Aquila (1986), pp. 155-161. Zbl0652.34053MR902630
- [10] V. Coti Zelati, Periodic solutions of dynamical systems with bounded potential, J. Diff. Eq., 67, 3 (1987), pp. 400-413. Zbl0646.34049MR884277
- [11] F. Giannone, Periodic solutions of dynamical systems by the saddle point theorem of P. H. Rabinowitz, Nonlinear Analysis T.M.A., 13, 6 (1989), pp. 707-719. Zbl0729.58044MR998515
- [12] P.H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis (Cesari, Kannan, Wainberger Editors), Academic Press (1978), pp. 161-177. Zbl0466.58015MR501092
- [13] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal., 13 (1982), pp. 343-352. Zbl0521.58028MR653462
- [14] A. Salvatore, Periodic solutions of Hamiltonian systems with a sub-quadratic potential, Boll. Un. Mat. Ital., 3-C (1984), pp. 393-406. Zbl0546.34034MR749296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.