Existence of T -periodic solutions for a class of lagrangian systems

Elvira Mirenghi; Maria Tucci

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 83, page 19-32
  • ISSN: 0041-8994

How to cite

top

Mirenghi, Elvira, and Tucci, Maria. "Existence of $T$-periodic solutions for a class of lagrangian systems." Rendiconti del Seminario Matematico della Università di Padova 83 (1990): 19-32. <http://eudml.org/doc/108178>.

@article{Mirenghi1990,
author = {Mirenghi, Elvira, Tucci, Maria},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {critical points; action; functional; Lagrangian system of differential equations; Lagrangian function},
language = {eng},
pages = {19-32},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence of $T$-periodic solutions for a class of lagrangian systems},
url = {http://eudml.org/doc/108178},
volume = {83},
year = {1990},
}

TY - JOUR
AU - Mirenghi, Elvira
AU - Tucci, Maria
TI - Existence of $T$-periodic solutions for a class of lagrangian systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 83
SP - 19
EP - 32
LA - eng
KW - critical points; action; functional; Lagrangian system of differential equations; Lagrangian function
UR - http://eudml.org/doc/108178
ER -

References

top
  1. [1] P. Bartolo - V. BENCI - D. FORTUNATO, Abstract critical point theorems and applications to some nonlinear problems with « strong » resonance at infinity, Nonlinear Analysis T.M.A., 7 (1983), pp. 981-1012. Zbl0522.58012MR713209
  2. [2] V. Benci, A geometrical index for the group S1 and some applications to the study of periodic solutions of ordinary differential equations, Comm. Pure Appl. Math., 34 (1981), pp. 393-432. Zbl0447.34040MR615624
  3. [3] V. Benci - A. CAPOZZI - D. FORTUNATO, Periodic solutions of Hamiltonian systems with superquadratic potential, Ann. Mat. Pura e Appl., 143 (1986), pp. 1-46. Zbl0632.34036MR859596
  4. [4] H. Berestycki, Solutions périodiques de systèmes Hamiltoniens, Sém. Bourbaki, 35e année (1982-83), no. 603. Zbl0526.58016MR728984
  5. [5] A. Capozzi - D. Fortunato - A. Salvatore, Periodic solutions of dynamical systems, Meccanica, 20 (1985), pp. 281-284. Zbl0599.70010MR841217
  6. [6] A. Capozzi - D. Fortunato - A. Salvatore, Periodic solutions of Lagrangian systems with a bounded potential, J. Math. Anal. and Appl., 124, 2 (1987), pp. 482-494. Zbl0664.34053MR887004
  7. [7] A. Capozzi - D. Lupo - S. Solimini, On the existence of a nontrivial solution to nonlinear problems at resonance, Nonlinear Analysis T.M.A., 13, 2 (1989), pp. 151-163. Zbl0684.35038MR979038
  8. [8] A. Capozzi - A. Salvatore, Periodic solutions for nonlinear problems with strong resonance at infinity, Comm. Math. Univ. Car., 23, 3 (1982), pp. 415-425. Zbl0507.34035MR677851
  9. [9] V. Coti Zelati, Periodic solutions of Hamiltonian systems and Morse theory, Atti del Convegno « Recent advances in Hamiltonian systems », L'Aquila (1986), pp. 155-161. Zbl0652.34053MR902630
  10. [10] V. Coti Zelati, Periodic solutions of dynamical systems with bounded potential, J. Diff. Eq., 67, 3 (1987), pp. 400-413. Zbl0646.34049MR884277
  11. [11] F. Giannone, Periodic solutions of dynamical systems by the saddle point theorem of P. H. Rabinowitz, Nonlinear Analysis T.M.A., 13, 6 (1989), pp. 707-719. Zbl0729.58044MR998515
  12. [12] P.H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis (Cesari, Kannan, Wainberger Editors), Academic Press (1978), pp. 161-177. Zbl0466.58015MR501092
  13. [13] P.H. Rabinowitz, Periodic solutions of Hamiltonian systems: a survey, SIAM J. Math. Anal., 13 (1982), pp. 343-352. Zbl0521.58028MR653462
  14. [14] A. Salvatore, Periodic solutions of Hamiltonian systems with a sub-quadratic potential, Boll. Un. Mat. Ital., 3-C (1984), pp. 393-406. Zbl0546.34034MR749296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.