Some results in viscoelasticity theory via a simple perturbation argument
M. Chipot; G. Vergara Caffarelli
Rendiconti del Seminario Matematico della Università di Padova (1990)
- Volume: 84, page 223-239
- ISSN: 0041-8994
Access Full Article
topHow to cite
topChipot, M., and Vergara Caffarelli, G.. "Some results in viscoelasticity theory via a simple perturbation argument." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 223-239. <http://eudml.org/doc/108199>.
@article{Chipot1990,
author = {Chipot, M., Vergara Caffarelli, G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linear theory of dynamic viscoelasticity; perturbation method; existence and uniqueness result; viscoelasticity without initial condition},
language = {eng},
pages = {223-239},
publisher = {Seminario Matematico of the University of Padua},
title = {Some results in viscoelasticity theory via a simple perturbation argument},
url = {http://eudml.org/doc/108199},
volume = {84},
year = {1990},
}
TY - JOUR
AU - Chipot, M.
AU - Vergara Caffarelli, G.
TI - Some results in viscoelasticity theory via a simple perturbation argument
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 223
EP - 239
LA - eng
KW - linear theory of dynamic viscoelasticity; perturbation method; existence and uniqueness result; viscoelasticity without initial condition
UR - http://eudml.org/doc/108199
ER -
References
top- [1] G. Capriz - G. Vergara Caffarelli, Alcune osservazioni sul problema dinamico in viscoelasticità lineare, Atti VIII Congresso AIMETA Torino, 1 (1986), pp. 11-13.
- [2] G. Capriz - E. VIRGA, Un teorema di unicita in viscoelasticità lineare, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 15-24. Zbl0655.73020MR964016
- [3] G. Capriz - E. VIRGA, Esempi di non-unicità in viscoelasticità lineare, Atti Accad. Sci. Torino, Suppl. 120 (1986), pp. 81-86. MR958163
- [4] M. Chipot - G. Vergara Caffarelli, Viscoelasticity without initial condition, in Proceedings of a Meeting in Trento, February 1987, PitmanResearch Notes in Mathematics, Longman, n. 190. Zbl0672.73038
- [5] B.D. Coleman - M.E. Gurtin, Waves in materials with memory.- II: On the growth and decay of one dimensional acceleration waves, Arch. Rat. Mech. Anal., 19 (1965), pp. 239-265. Zbl0244.73017MR195336
- [6] C.M. Dafermos, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Eq., 7 (1970), pp. 554-569. Zbl0212.45302MR259670
- [7] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. Zbl0214.24503MR281400
- [8] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integro-differential equations, Comm. P.D.E., 4 (3), (1979), pp. 219-278. Zbl0464.45009MR522712
- [9] G. Fichera, Integro-differential problems of hereditary elasticity, Atti Sem. Mat. Modena, 26 (1977), pp. 363-370. Zbl0407.73005MR532388
- [10] G. Fichera, Avere una memoria tenace crea gravi problemi, Arch. Rat. Mech. Anal., 70 (1979), pp. 101-112. Zbl0425.73002MR1553577
- [11] G. Fichera, Analytic problems of materials with memory, Proc. Int. CongresIUTAM, (1980), pp. 223-230. Zbl0471.73040MR617031
- [12] G. Fichera, Sul principio della memoria evanescente, Rend. Sem. Mat. Univ. Padova, 68 (1982), pp. 245-259. Zbl0515.73003
- [13] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1985). Zbl0562.35001
- [14] W.J. Hrusa - J.A. Nohel, Global existence and assymptotics in one dimensional nonlinear viscoelasticity, Trends and Applications of Pure Mathematics to MechanicsLecture Notes in Physics, n. 195 (P. G. Ciarlet - M. Roseau Eds.). Zbl0543.73043
- [15] W. Hrusa - J.A. Nohel - M. Renardy, Mathematical Problems in Viscoelasticity, Longman Scientific and Technical (1987). Zbl0719.73013MR919738
- [16] D. Leguillon - E. SANCHEZ-PALENCIA, Oomputation of Singular Solutions in Elliptic Problems and Elasticity, Masson (1987). Zbl0647.73010MR995254
- [17] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag (1966). Zbl0142.38701MR202511
- [18] R.C. Mac Camy, A model for one-dimensional, nonlinear viscoelasticity, QuaterlyAppl. Math., 35 (1977), pp. 21-33. Zbl0355.73041
- [19] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland (1984). Zbl0568.35002MR769654
- [20] G. Vergara Caffarelli - E. Virga, Sull'unicità della soluzione del problema dinamico della viscoelasticità lineare, Atti Accad. Naz. Lincei, 81 (1987), pp. 379-387. Zbl0667.73027MR999829
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.