Some results in viscoelasticity theory via a simple perturbation argument

M. Chipot; G. Vergara Caffarelli

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 223-239
  • ISSN: 0041-8994

How to cite

top

Chipot, M., and Vergara Caffarelli, G.. "Some results in viscoelasticity theory via a simple perturbation argument." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 223-239. <http://eudml.org/doc/108199>.

@article{Chipot1990,
author = {Chipot, M., Vergara Caffarelli, G.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linear theory of dynamic viscoelasticity; perturbation method; existence and uniqueness result; viscoelasticity without initial condition},
language = {eng},
pages = {223-239},
publisher = {Seminario Matematico of the University of Padua},
title = {Some results in viscoelasticity theory via a simple perturbation argument},
url = {http://eudml.org/doc/108199},
volume = {84},
year = {1990},
}

TY - JOUR
AU - Chipot, M.
AU - Vergara Caffarelli, G.
TI - Some results in viscoelasticity theory via a simple perturbation argument
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 223
EP - 239
LA - eng
KW - linear theory of dynamic viscoelasticity; perturbation method; existence and uniqueness result; viscoelasticity without initial condition
UR - http://eudml.org/doc/108199
ER -

References

top
  1. [1] G. Capriz - G. Vergara Caffarelli, Alcune osservazioni sul problema dinamico in viscoelasticità lineare, Atti VIII Congresso AIMETA Torino, 1 (1986), pp. 11-13. 
  2. [2] G. Capriz - E. VIRGA, Un teorema di unicita in viscoelasticità lineare, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 15-24. Zbl0655.73020MR964016
  3. [3] G. Capriz - E. VIRGA, Esempi di non-unicità in viscoelasticità lineare, Atti Accad. Sci. Torino, Suppl. 120 (1986), pp. 81-86. MR958163
  4. [4] M. Chipot - G. Vergara Caffarelli, Viscoelasticity without initial condition, in Proceedings of a Meeting in Trento, February 1987, PitmanResearch Notes in Mathematics, Longman, n. 190. Zbl0672.73038
  5. [5] B.D. Coleman - M.E. Gurtin, Waves in materials with memory.- II: On the growth and decay of one dimensional acceleration waves, Arch. Rat. Mech. Anal., 19 (1965), pp. 239-265. Zbl0244.73017MR195336
  6. [6] C.M. Dafermos, An abstract Volterra equation with application to linear viscoelasticity, J. Diff. Eq., 7 (1970), pp. 554-569. Zbl0212.45302MR259670
  7. [7] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. Zbl0214.24503MR281400
  8. [8] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integro-differential equations, Comm. P.D.E., 4 (3), (1979), pp. 219-278. Zbl0464.45009MR522712
  9. [9] G. Fichera, Integro-differential problems of hereditary elasticity, Atti Sem. Mat. Modena, 26 (1977), pp. 363-370. Zbl0407.73005MR532388
  10. [10] G. Fichera, Avere una memoria tenace crea gravi problemi, Arch. Rat. Mech. Anal., 70 (1979), pp. 101-112. Zbl0425.73002MR1553577
  11. [11] G. Fichera, Analytic problems of materials with memory, Proc. Int. CongresIUTAM, (1980), pp. 223-230. Zbl0471.73040MR617031
  12. [12] G. Fichera, Sul principio della memoria evanescente, Rend. Sem. Mat. Univ. Padova, 68 (1982), pp. 245-259. Zbl0515.73003
  13. [13] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, Springer-Verlag (1985). Zbl0562.35001
  14. [14] W.J. Hrusa - J.A. Nohel, Global existence and assymptotics in one dimensional nonlinear viscoelasticity, Trends and Applications of Pure Mathematics to MechanicsLecture Notes in Physics, n. 195 (P. G. Ciarlet - M. Roseau Eds.). Zbl0543.73043
  15. [15] W. Hrusa - J.A. Nohel - M. Renardy, Mathematical Problems in Viscoelasticity, Longman Scientific and Technical (1987). Zbl0719.73013MR919738
  16. [16] D. Leguillon - E. SANCHEZ-PALENCIA, Oomputation of Singular Solutions in Elliptic Problems and Elasticity, Masson (1987). Zbl0647.73010MR995254
  17. [17] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag (1966). Zbl0142.38701MR202511
  18. [18] R.C. Mac Camy, A model for one-dimensional, nonlinear viscoelasticity, QuaterlyAppl. Math., 35 (1977), pp. 21-33. Zbl0355.73041
  19. [19] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland (1984). Zbl0568.35002MR769654
  20. [20] G. Vergara Caffarelli - E. Virga, Sull'unicità della soluzione del problema dinamico della viscoelasticità lineare, Atti Accad. Naz. Lincei, 81 (1987), pp. 379-387. Zbl0667.73027MR999829

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.