Fourier integral operators of infinite order on 𝒟 L 2 σ 𝒟 L 2 σ ' with an application to a certain Cauchy problem

Rossella Agliardi

Rendiconti del Seminario Matematico della Università di Padova (1990)

  • Volume: 84, page 71-82
  • ISSN: 0041-8994

How to cite

top

Agliardi, Rossella. "Fourier integral operators of infinite order on $\mathcal {D}^{ \left\lbrace \sigma \right\rbrace }_{L^2} \left(\mathcal {D}^{\left\lbrace \sigma \right\rbrace ^{\prime }}_{L^2}\right)$ with an application to a certain Cauchy problem." Rendiconti del Seminario Matematico della Università di Padova 84 (1990): 71-82. <http://eudml.org/doc/108207>.

@article{Agliardi1990,
author = {Agliardi, Rossella},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Fourier integral operators; Cauchy problem; pseudo-differential operators; well-posedness},
language = {eng},
pages = {71-82},
publisher = {Seminario Matematico of the University of Padua},
title = {Fourier integral operators of infinite order on $\mathcal \{D\}^\{ \left\lbrace \sigma \right\rbrace \}_\{L^2\} \left(\mathcal \{D\}^\{\left\lbrace \sigma \right\rbrace ^\{\prime \}\}_\{L^2\}\right)$ with an application to a certain Cauchy problem},
url = {http://eudml.org/doc/108207},
volume = {84},
year = {1990},
}

TY - JOUR
AU - Agliardi, Rossella
TI - Fourier integral operators of infinite order on $\mathcal {D}^{ \left\lbrace \sigma \right\rbrace }_{L^2} \left(\mathcal {D}^{\left\lbrace \sigma \right\rbrace ^{\prime }}_{L^2}\right)$ with an application to a certain Cauchy problem
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1990
PB - Seminario Matematico of the University of Padua
VL - 84
SP - 71
EP - 82
LA - eng
KW - Fourier integral operators; Cauchy problem; pseudo-differential operators; well-posedness
UR - http://eudml.org/doc/108207
ER -

References

top
  1. 1] R. Agliardi, Pseudo-differential operators of infinite order on D{σ}L2),(D{σ)'L2), and applications to the Cauchy problem for some elementary operators, to appear on Ann. di Mat. Pura e Appl. Zbl0734.35164
  2. [2] L. Cattabriga, Some remarks on the well-posedness of the Cauchy problem in Gevrey spaces, in Partial Differential Equations and the Calculus of Variations: Essays in honour of Ennio De Giorgi. Zbl0701.35014
  3. [3] L. Cattabriga - D. MARI, Parametrix of infinite order on Gevrey spaces to the Cauchy problem for hyperbolic operators with one constant multiple characteristics, Ricerche di Mat., Suppl., 36 (1987), pp. 127-147. Zbl0676.35052MR956023
  4. [4] L. Cattabriga - L. Zanghirati, Fourier integral operators of infinite order on Gevrey spaces-Applications to the Cauchy problem for certain hyperbolic operators, to appear on Journal of Math. of Kyoto Univ. Zbl0725.35113MR1041717
  5. [5] P. Hartman, Ordinary Differential Equations, John Wiley, 1964. Zbl0125.32102MR171038
  6. [6] S. Hashimoto - T. Matsuzawa - Y. Morimoto, Operateurs pseudo-differentiels et classes de Gevrey, C.P.D.E., (1983), pp. 1277-1289. Zbl0525.35086MR711439
  7. [7] K. Kajitani, Fundamental solution of Cauchy problem for hyperbolic systems and Gevrey classes, Tsukuba J. Math., 1 (1977), pp. 163-193. Zbl0402.35068MR481569
  8. [8] K. Kajitani - S. Wakabayashi, Microhyperbolic operators in Gevrey classes, Publ. RIMS (to appear). Zbl0705.35158MR1003785
  9. [9] H. Kumano-Go, Pseudo-differential Operators, M.I.T. Press, 1981. Zbl0489.35003
  10. [10] S. Misohata, On the Cauchy problem for hyperbolic equations and related problems-micro-local energy methods, Proc. Taniguchi Intern. Sympos. on Hyperbolic Equations and Related Topics, Kataka, 1984, pp. 193-233. Zbl0665.35006MR925250
  11. [11] S. Mizohata, On the Cauchy Problem, Science Press, Bejing, 1985. Zbl0616.35002MR860041
  12. [12] Y. Morimoto - K. Taniguchi, Propagation of wave front sets of solutions of the Cauchy problem for hyperbolic equations in Gevrey classes, Osaka J. of Math., 23 (1986), pp. 765-814. Zbl0631.35052MR873208
  13. [13] L. Rodino - L. Zanghirati, Pseudo-differential operators with multiple characteristics and Gevrey singularities, C.P.D.E., 11 (1986), pp. 673-711. Zbl0597.58034MR837927
  14. [14] K. Taniguchi, Fourier integral operators in Gevrey classes on Rn and the fundamental solution for a hyperbolic operator, Publ. R.I.M.S., 20 (1984), pp. 491-542. Zbl0574.35082MR759680
  15. [15] K. Taniguchi, Pseudo-differential operators acting on ultradistributions, Math. Japonica, 30 (1985), pp. 719-741. Zbl0584.35104
  16. [16] L. Zanghirati, Pseudo-differential operators of infinite order and Gevrey classes, Ann. Univ. Ferrara - sez. VII - Sc. Mat. (1985), pp. 197-219. Zbl0601.35110

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.