On a class of second order integrodifferential equations

Daniela Sforza

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 86, page 157-174
  • ISSN: 0041-8994

How to cite

top

Sforza, Daniela. "On a class of second order integrodifferential equations." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 157-174. <http://eudml.org/doc/108230>.

@article{Sforza1991,
author = {Sforza, Daniela},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Banach space; Laplace transformable functions; resolvent operator; existence; uniqueness; strict and strong solutions; abstract second order integrodifferential equation; analytic semigroup; variation of constants formula},
language = {eng},
pages = {157-174},
publisher = {Seminario Matematico of the University of Padua},
title = {On a class of second order integrodifferential equations},
url = {http://eudml.org/doc/108230},
volume = {86},
year = {1991},
}

TY - JOUR
AU - Sforza, Daniela
TI - On a class of second order integrodifferential equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 157
EP - 174
LA - eng
KW - Banach space; Laplace transformable functions; resolvent operator; existence; uniqueness; strict and strong solutions; abstract second order integrodifferential equation; analytic semigroup; variation of constants formula
UR - http://eudml.org/doc/108230
ER -

References

top
  1. [1] C.M. Dafermos, An abstract Volterra equation with applications to linear viscoelasticity, J. Diff. Eq., 7 (1970), pp. 554-569. Zbl0212.45302MR259670
  2. [2] C.M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rat. Mech. Anal., 37 (1970), pp. 297-308. Zbl0214.24503MR281400
  3. [3] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Part. Diff. Eq., 4 (3) (1979), pp. 219-278. Zbl0464.45009MR522712
  4. [4] C.M. Dafermos - J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Amer. J. Math. Supplement (1981), pp. 87-116. Zbl0588.35016MR648457
  5. [5] G. Da Prato - M. Iannelli, Linear integro-differential equations in Banach spaces, Rend. Sem. Mat. Univ. Padova, 62 (1980), pp. 207-219. Zbl0451.45014MR582951
  6. [6] G. Da Prato - M. Iannelli - E. Sinestrari, Temporal regularity for a class of integrodifferential equations in Banach spaces, Boll. U. M. I. Anal. Funz. Appl. Serie VI, Vol. II-C, N. 1 (1983), pp. 171-185. Zbl0527.45005MR718369
  7. [7] G. Da Prato - M. Iannelli - E. Sinestrari, Regularity of solutions of a class of linear integrodifferential equations in Banach spaces, J. Int. Eq., 8 (1985), pp. 27-40. Zbl0576.45011MR771750
  8. [8] G. Da Prato - M. Iannelli, Existence and regularity for a class of integrodifferential equations of parabolic type, J. Math. Anal. Appl., 112 (1985), pp. 36-55. Zbl0583.45009MR812792
  9. [9] G. Da Prato - A. Lunardi, Solvability on the real line of a class of linear Volterra integrodifferential equations of parabolic type, Ann. Mat. Pura Appl. (IV), CL (1988), pp. 67-118. Zbl0646.45013MR946030
  10. [10] W.J. Hrusa - J.A. Nohel, The Cauchy problem in one-dimensional nonlinear viscoelasticity, J. Diff. Eq., 59 (1985), pp. 388-412. Zbl0535.35057MR807854
  11. [11] W.J. Hrusa - M. Renardy - J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman Group Limited. Zbl0719.73013
  12. [12] A. Lunardi, Laplace transform methods in integrodifferential equations, J. Int. Eq., 10 (1985), pp. 185-211. Zbl0587.45015MR831244
  13. [13] R.C. Maccamy, A model for one-dimensional, nonlinear viscoelasticity, Q. Appl. Math., 35 (1977), pp. 21-33. Zbl0355.73041MR478939
  14. [14] D.V. Widder, TheLaplace Transform, Princeton University Press, Princeton (1941). Zbl0063.08245MR5923

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.