Abstract nonlinear Timoshenko beam equation

Stefano Panizzi

Rendiconti del Seminario Matematico della Università di Padova (1991)

  • Volume: 86, page 193-205
  • ISSN: 0041-8994

How to cite

top

Panizzi, Stefano. "Abstract nonlinear Timoshenko beam equation." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 193-205. <http://eudml.org/doc/108234>.

@article{Panizzi1991,
author = {Panizzi, Stefano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {fourth order nonlinear evolution problem; global existence and boundedness; weak solution; Cauchy problem},
language = {eng},
pages = {193-205},
publisher = {Seminario Matematico of the University of Padua},
title = {Abstract nonlinear Timoshenko beam equation},
url = {http://eudml.org/doc/108234},
volume = {86},
year = {1991},
}

TY - JOUR
AU - Panizzi, Stefano
TI - Abstract nonlinear Timoshenko beam equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 193
EP - 205
LA - eng
KW - fourth order nonlinear evolution problem; global existence and boundedness; weak solution; Cauchy problem
UR - http://eudml.org/doc/108234
ER -

References

top
  1. [AE] R. Aprahamian - D.A. Evensen, J. Appl. Mech.-Trans. ASME (June 1970), pp. 287-291. 
  2. [A] A. Arosio, Global weak solutions for abstract nonlinear evolution equations of hyperbolic type, Quad. Dip. Mat. Univ. Parma, 50 (1990). 
  3. [APP] A. Arosio - S. Panizzi - M.G. Paoli, Inhomogeneous Timoshenko beam equations, short communication at the 5° Symposium on «Control of distributed parameters systems» (Perpignan, June '89); Temporally inhomogeneous Timoshenko beam equations, Ann. Mat. Pura Appl. (to appear). 
  4. [B] J. Bartak, Stability and correctness of abstract differential equations in Hilbert spaces, Czechoslovak Math. J., 28 (103), No. 4 (1978), pp. 548-593. Zbl0409.34057MR499545
  5. [CHU] Cremer - Heekl - Ungar, Structure borne sound, Springer, Berlin. 
  6. [D] Y. Deng, Exponential uniform stabilization of cantilevered Timoshenko beam with a tip body via boundary feedback control, 5° Symposium on Control of distributed parameter systems, Perpignan (1989). 
  7. [F] A. Flammia, Il problema di Cauchy per l'equazione □u = f(u) da un punto di vista astratto, Teorema 1.1, Tesi di laurea, Univ. Pisa, a. a. 1983/84. 
  8. [Fl] W. Flügge, Die Ausbreitung von biegenvellen in Stäben, Z. Angew. Math. Mech., 22 (1942), pp. 312-318. Zbl68.0551.03JFM68.0551.03
  9. [IK] K. Ito - N. Kunimatsu, Boundary control of the Timoshenko beam with viscous internal dampings, 5° Symposium on Control of distributed parameter systems, Perpignan (1989). 
  10. [KR] J.U. Kim - Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25, No. 6 (1987), pp. 1417-1429. Zbl0632.93057MR912448
  11. [Ko] V. Komornik, Controlabilité exacte en temps minimal de quelques modèles de placques, C.R. Acad. Paris, Sér. I Math., 307 (1988), pp. 471-474. Zbl0672.49026MR964109
  12. [Kr] M. Kranys, Casual theory of evolution and wave propagation in mathematical physics, ASME J. Appl. Mech., 42, No. 11 (1989), pp. 305-321. MR1021554
  13. [LL] J. Lagnese - J.L. Lions, Modelling, analysis and control of thin plates, Masson, Paris (1988). Zbl0662.73039MR953313
  14. [L] J.L. Lions, Quelques méthodes de rèsolution des problèmes aux limites on linéaires, ch. 1, Th. 1.1, Dunod & Gauthier Villars, Paris (1969). Zbl0189.40603MR259693
  15. [M] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., 18 (1951), pp. 31-38. Zbl0044.40101
  16. [N] J. Neustupa, A contribution to the theory of stability of differential equations in Banach space, Cwechoslovak Math. J., 29 (104), No. 1 (1979), pp. 27-52. Zbl0441.34044MR518138
  17. [Pa] M.G. Paoli, Il problema di Cauchy per l'equazione (□a □b + a□c)u = 0 da un punto di vista astratto, Tesi di Laurea, Univ. Pisa, a.a. 1987/88. 
  18. [Ru] D.L. Russell, Mathematical models for the elastic beam and their control-theoretic implications, Semigroups, theory and applications, Vol. II, H. Brezis, M. G. Crandall & F. Kappel eds., Longman, Harlow (1986), pp. 177-216. Zbl0638.93038MR879308
  19. [S] D.H. Sattinger, On global solutions of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal., 30 (1968), pp. 148-172. Zbl0159.39102MR227616
  20. [Sc] J. Schmidt, Entwurf von reglern zur aktiven schwingungdampfung an flexciblen mechanischen strukturen, Dissertation von Diplom-Ingenieur, Darmstadt (1987). 
  21. [T] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), pp. 744-746; Vibration problems in engineering, 3a ed., Van No-strand, Princeton (1955). 
  22. [TC] T.C. Traill-Nash - A.R. Collar, The effects of shear flexibility and rotatory inertia on the binding vibrations of beams, Quart. J. Mech. Appl. Math., 6 (1953), pp. 186-222. Zbl0050.40504MR66205
  23. [U] Ya S. Uflyand, The propagation of waves in the transverse vibrations of bar and plates (in russo), Akad. Nauk SSSR Prikl. Mat. i Meh., 12 (1948), pp. 287-300. MR25969
  24. [W] K. Washizu, Variational methods in elasticity and plasticity, Pergamon, London (1968). Zbl0498.73014MR391679

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.