Abstract nonlinear Timoshenko beam equation
Rendiconti del Seminario Matematico della Università di Padova (1991)
- Volume: 86, page 193-205
- ISSN: 0041-8994
Access Full Article
topHow to cite
topPanizzi, Stefano. "Abstract nonlinear Timoshenko beam equation." Rendiconti del Seminario Matematico della Università di Padova 86 (1991): 193-205. <http://eudml.org/doc/108234>.
@article{Panizzi1991,
author = {Panizzi, Stefano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {fourth order nonlinear evolution problem; global existence and boundedness; weak solution; Cauchy problem},
language = {eng},
pages = {193-205},
publisher = {Seminario Matematico of the University of Padua},
title = {Abstract nonlinear Timoshenko beam equation},
url = {http://eudml.org/doc/108234},
volume = {86},
year = {1991},
}
TY - JOUR
AU - Panizzi, Stefano
TI - Abstract nonlinear Timoshenko beam equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1991
PB - Seminario Matematico of the University of Padua
VL - 86
SP - 193
EP - 205
LA - eng
KW - fourth order nonlinear evolution problem; global existence and boundedness; weak solution; Cauchy problem
UR - http://eudml.org/doc/108234
ER -
References
top- [AE] R. Aprahamian - D.A. Evensen, J. Appl. Mech.-Trans. ASME (June 1970), pp. 287-291.
- [A] A. Arosio, Global weak solutions for abstract nonlinear evolution equations of hyperbolic type, Quad. Dip. Mat. Univ. Parma, 50 (1990).
- [APP] A. Arosio - S. Panizzi - M.G. Paoli, Inhomogeneous Timoshenko beam equations, short communication at the 5° Symposium on «Control of distributed parameters systems» (Perpignan, June '89); Temporally inhomogeneous Timoshenko beam equations, Ann. Mat. Pura Appl. (to appear).
- [B] J. Bartak, Stability and correctness of abstract differential equations in Hilbert spaces, Czechoslovak Math. J., 28 (103), No. 4 (1978), pp. 548-593. Zbl0409.34057MR499545
- [CHU] Cremer - Heekl - Ungar, Structure borne sound, Springer, Berlin.
- [D] Y. Deng, Exponential uniform stabilization of cantilevered Timoshenko beam with a tip body via boundary feedback control, 5° Symposium on Control of distributed parameter systems, Perpignan (1989).
- [F] A. Flammia, Il problema di Cauchy per l'equazione □u = f(u) da un punto di vista astratto, Teorema 1.1, Tesi di laurea, Univ. Pisa, a. a. 1983/84.
- [Fl] W. Flügge, Die Ausbreitung von biegenvellen in Stäben, Z. Angew. Math. Mech., 22 (1942), pp. 312-318. Zbl68.0551.03JFM68.0551.03
- [IK] K. Ito - N. Kunimatsu, Boundary control of the Timoshenko beam with viscous internal dampings, 5° Symposium on Control of distributed parameter systems, Perpignan (1989).
- [KR] J.U. Kim - Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25, No. 6 (1987), pp. 1417-1429. Zbl0632.93057MR912448
- [Ko] V. Komornik, Controlabilité exacte en temps minimal de quelques modèles de placques, C.R. Acad. Paris, Sér. I Math., 307 (1988), pp. 471-474. Zbl0672.49026MR964109
- [Kr] M. Kranys, Casual theory of evolution and wave propagation in mathematical physics, ASME J. Appl. Mech., 42, No. 11 (1989), pp. 305-321. MR1021554
- [LL] J. Lagnese - J.L. Lions, Modelling, analysis and control of thin plates, Masson, Paris (1988). Zbl0662.73039MR953313
- [L] J.L. Lions, Quelques méthodes de rèsolution des problèmes aux limites on linéaires, ch. 1, Th. 1.1, Dunod & Gauthier Villars, Paris (1969). Zbl0189.40603MR259693
- [M] R.D. Mindlin, Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech., 18 (1951), pp. 31-38. Zbl0044.40101
- [N] J. Neustupa, A contribution to the theory of stability of differential equations in Banach space, Cwechoslovak Math. J., 29 (104), No. 1 (1979), pp. 27-52. Zbl0441.34044MR518138
- [Pa] M.G. Paoli, Il problema di Cauchy per l'equazione (□a □b + a□c)u = 0 da un punto di vista astratto, Tesi di Laurea, Univ. Pisa, a.a. 1987/88.
- [Ru] D.L. Russell, Mathematical models for the elastic beam and their control-theoretic implications, Semigroups, theory and applications, Vol. II, H. Brezis, M. G. Crandall & F. Kappel eds., Longman, Harlow (1986), pp. 177-216. Zbl0638.93038MR879308
- [S] D.H. Sattinger, On global solutions of nonlinear hyperbolic equations, Arch. Rat. Mech. Anal., 30 (1968), pp. 148-172. Zbl0159.39102MR227616
- [Sc] J. Schmidt, Entwurf von reglern zur aktiven schwingungdampfung an flexciblen mechanischen strukturen, Dissertation von Diplom-Ingenieur, Darmstadt (1987).
- [T] S. Timoshenko, On the correction for shear of the differential equation for transverse vibrations of prismatic bars, Philosophical Magazine, 41 (1921), pp. 744-746; Vibration problems in engineering, 3a ed., Van No-strand, Princeton (1955).
- [TC] T.C. Traill-Nash - A.R. Collar, The effects of shear flexibility and rotatory inertia on the binding vibrations of beams, Quart. J. Mech. Appl. Math., 6 (1953), pp. 186-222. Zbl0050.40504MR66205
- [U] Ya S. Uflyand, The propagation of waves in the transverse vibrations of bar and plates (in russo), Akad. Nauk SSSR Prikl. Mat. i Meh., 12 (1948), pp. 287-300. MR25969
- [W] K. Washizu, Variational methods in elasticity and plasticity, Pergamon, London (1968). Zbl0498.73014MR391679
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.