Distribution of solutions of diophantine equations , where are polynomials
Rendiconti del Seminario Matematico della Università di Padova (1992)
- Volume: 87, page 39-68
- ISSN: 0041-8994
Access Full Article
topHow to cite
topSchinzel, A., and Zannier, U.. "Distribution of solutions of diophantine equations $f_1(x_1)f_2(x_2) = f_3(x_3)$, where $f_i$ are polynomials." Rendiconti del Seminario Matematico della Università di Padova 87 (1992): 39-68. <http://eudml.org/doc/108258>.
@article{Schinzel1992,
author = {Schinzel, A., Zannier, U.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {polynomials with integer coefficients; number of solutions; quadratic polynomials; lower bound},
language = {eng},
pages = {39-68},
publisher = {Seminario Matematico of the University of Padua},
title = {Distribution of solutions of diophantine equations $f_1(x_1)f_2(x_2) = f_3(x_3)$, where $f_i$ are polynomials},
url = {http://eudml.org/doc/108258},
volume = {87},
year = {1992},
}
TY - JOUR
AU - Schinzel, A.
AU - Zannier, U.
TI - Distribution of solutions of diophantine equations $f_1(x_1)f_2(x_2) = f_3(x_3)$, where $f_i$ are polynomials
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 87
SP - 39
EP - 68
LA - eng
KW - polynomials with integer coefficients; number of solutions; quadratic polynomials; lower bound
UR - http://eudml.org/doc/108258
ER -
References
top- [1] E. Bombieri - J. PILA, The number of integral points on arcs and ovals, Duke Math. J., 52 (1989), pp. 337-357. Zbl0718.11048MR1016893
- [2] R.D. Carmichael, On the numerical factors of the arithmetic form αn ± βn, Ann. Math. (2), 15 (1913-1914), pp. 30-70. JFM44.0216.01
- [3] P.G.L. Dirichlet, Vorlesungen über Zahlentheorie, 4 Auflage, reprint Chelsea, New York (1968). MR237283
- [4] F. Dodd - L. Mattics, Solution of the problem E 3138, Amer. Math. Monthly.
- [5] M.N. Huxley, A note on polynomial congruences, Recent Progress in Analytic Number Theory, Vol. 1 (Durham1979), pp. 193-196, Academic Press (1981). Zbl0463.10002MR637347
- [6] B.W. Jones, The Arithmetic Theory of Quadratic Forms, J. Wiley, New York (1950). Zbl0041.17505MR37321
- [7] O. Perron, Die Lehre von den Kettenbrüchen, 2 Auflage, reprint Chelsea. Zbl0041.18206
- [8] G. Robin, Estimation de la fonction de Tchebychef Θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arith., 42 (1983), pp. 367-389. Zbl0475.10034
- [9] G. Sándor, Über die Anzahl der Lösungen einer Kongruenz, Acta Math., 87 (1952), pp. 13-16. Zbl0046.26605MR47679
- [10] A. Schinzel, On some problems of the arithmetical theory of continued fractions, Acta Arith., 7 (1961), pp. 393-413. Zbl0099.04003MR125814
- [11] A. Schinzel, Selected Topics of Polynomials, The University of Michigan Press, Ann Arbor (1982). Zbl0487.12002MR649775
- [12] D. Wolke, Multiplikative Funktionen auf schnell wachsenden Folgen, J. Reine Angew. Math., 251 (1971), pp. 55-67. Zbl0234.10030MR289439
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.