On the exterior Dirichlet problem for Δ u - u + f ( x , u ) = 0

Giovanna Citti

Rendiconti del Seminario Matematico della Università di Padova (1992)

  • Volume: 88, page 83-110
  • ISSN: 0041-8994

How to cite

top

Citti, Giovanna. "On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$." Rendiconti del Seminario Matematico della Università di Padova 88 (1992): 83-110. <http://eudml.org/doc/108278>.

@article{Citti1992,
author = {Citti, Giovanna},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {exterior domain; comparison methods},
language = {eng},
pages = {83-110},
publisher = {Seminario Matematico of the University of Padua},
title = {On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$},
url = {http://eudml.org/doc/108278},
volume = {88},
year = {1992},
}

TY - JOUR
AU - Citti, Giovanna
TI - On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 88
SP - 83
EP - 110
LA - eng
KW - exterior domain; comparison methods
UR - http://eudml.org/doc/108278
ER -

References

top
  1. [1] H. Berestycki - P. L. LIONS, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), pp. 313-346. Zbl0533.35029MR695535
  2. [2] F.V. Atkinsons - L.A. Peletier, Ground states of - Δu = f(u) and the Emden-Fowler equation, Arch. Rational Mech. Anal., 93 (1986), pp. 103-127. Zbl0606.35029
  3. [3] W.Y. Ding - W. M. NI, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), pp. 283-308. Zbl0616.35029MR807816
  4. [4] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. I. H. P. Anal. non linéaire, v. 1, n. 2 (1984), pp. 109-145. Zbl0541.49009MR778970
  5. [5] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. I. H. P. Anal. non linéaire, v. 1, n. 4 (1984), pp. 223-283. Zbl0704.49004MR778974
  6. [6] V. Benci - G. CERAMI, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 94 (1987), pp. 283-300. Zbl0635.35036MR898712
  7. [7] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, in Nonlinear Diffusion Equations and Their Equilibrium States II (W. M. NI, L. A. PELETIER and J. SERRIN, Eds.), Springer-Verlag, New York/ Berlin, 1988, pp. 85-121. Zbl0685.35039MR956083
  8. [8] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in Rn, Arch. Rational Mech. Anal., 105 (1989), pp. 243-266. Zbl0676.35032
  9. [9] A. Bahri - P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, to appear. Zbl0883.35045MR1450954
  10. [10] C.V. Coffman - M.M. Marcus, Superlinear elliptic Dirichlet problems in almost spherically symmetric exterior domains, Arch. Rational Mech. Anal., 96 (1986), pp. 167-197. Zbl0664.35028MR853972
  11. [11] M.K. Kwong - L. Zhang, Uniqueness of the positive solution of Δu + f(u) = 0, preprint MCS-P117-1289. 
  12. [12] K McLeod - J. Serrin, Uniqueness of positive radial sotutions of Δu + f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), pp. 115-145. Zbl0667.35023
  13. [13] B. Gidas - W.M. Ni - L. Niremberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. Math. Suppl. Stud., 7-A, Math. Anal. Appl. Part A (1981), pp. 369-402. Zbl0469.35052
  14. [14] M. Badiale - G. Citti, Concentration compactness principle and quasilinear elliptic equations in Rn, Comm. part. diff. Equations, 16, 11 (1991), pp. 1795-1818. Zbl0784.35024MR1135920

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.