On the exterior Dirichlet problem for
Rendiconti del Seminario Matematico della Università di Padova (1992)
- Volume: 88, page 83-110
- ISSN: 0041-8994
Access Full Article
topHow to cite
topCitti, Giovanna. "On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$." Rendiconti del Seminario Matematico della Università di Padova 88 (1992): 83-110. <http://eudml.org/doc/108278>.
@article{Citti1992,
author = {Citti, Giovanna},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {exterior domain; comparison methods},
language = {eng},
pages = {83-110},
publisher = {Seminario Matematico of the University of Padua},
title = {On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$},
url = {http://eudml.org/doc/108278},
volume = {88},
year = {1992},
}
TY - JOUR
AU - Citti, Giovanna
TI - On the exterior Dirichlet problem for $\Delta u - u + f( x, u) = 0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1992
PB - Seminario Matematico of the University of Padua
VL - 88
SP - 83
EP - 110
LA - eng
KW - exterior domain; comparison methods
UR - http://eudml.org/doc/108278
ER -
References
top- [1] H. Berestycki - P. L. LIONS, Nonlinear scalar field equations I. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), pp. 313-346. Zbl0533.35029MR695535
- [2] F.V. Atkinsons - L.A. Peletier, Ground states of - Δu = f(u) and the Emden-Fowler equation, Arch. Rational Mech. Anal., 93 (1986), pp. 103-127. Zbl0606.35029
- [3] W.Y. Ding - W. M. NI, On the existence of positive entire solutions of a semilinear elliptic equation, Arch. Rational Mech. Anal., 91 (1986), pp. 283-308. Zbl0616.35029MR807816
- [4] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1, Ann. I. H. P. Anal. non linéaire, v. 1, n. 2 (1984), pp. 109-145. Zbl0541.49009MR778970
- [5] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2, Ann. I. H. P. Anal. non linéaire, v. 1, n. 4 (1984), pp. 223-283. Zbl0704.49004MR778974
- [6] V. Benci - G. CERAMI, Positive solutions of some nonlinear elliptic problems in exterior domains, Arch. Rational Mech. Anal., 94 (1987), pp. 283-300. Zbl0635.35036MR898712
- [7] P.L. Lions, On positive solutions of semilinear elliptic equations in unbounded domains, in Nonlinear Diffusion Equations and Their Equilibrium States II (W. M. NI, L. A. PELETIER and J. SERRIN, Eds.), Springer-Verlag, New York/ Berlin, 1988, pp. 85-121. Zbl0685.35039MR956083
- [8] M.K. Kwong, Uniqueness of positive solutions of Δu - u + up = 0 in Rn, Arch. Rational Mech. Anal., 105 (1989), pp. 243-266. Zbl0676.35032
- [9] A. Bahri - P.L. Lions, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, to appear. Zbl0883.35045MR1450954
- [10] C.V. Coffman - M.M. Marcus, Superlinear elliptic Dirichlet problems in almost spherically symmetric exterior domains, Arch. Rational Mech. Anal., 96 (1986), pp. 167-197. Zbl0664.35028MR853972
- [11] M.K. Kwong - L. Zhang, Uniqueness of the positive solution of Δu + f(u) = 0, preprint MCS-P117-1289.
- [12] K McLeod - J. Serrin, Uniqueness of positive radial sotutions of Δu + f(u) = 0 in Rn, Arch. Rational Mech. Anal., 99 (1987), pp. 115-145. Zbl0667.35023
- [13] B. Gidas - W.M. Ni - L. Niremberg, Symmetry of positive solutions of nonlinear elliptic equations in Rn, Adv. Math. Suppl. Stud., 7-A, Math. Anal. Appl. Part A (1981), pp. 369-402. Zbl0469.35052
- [14] M. Badiale - G. Citti, Concentration compactness principle and quasilinear elliptic equations in Rn, Comm. part. diff. Equations, 16, 11 (1991), pp. 1795-1818. Zbl0784.35024MR1135920
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.