Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.

M. Sabatini

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 89, page 1-9
  • ISSN: 0041-8994

How to cite

top

Sabatini, M.. "Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 1-9. <http://eudml.org/doc/108288>.

@article{Sabatini1993,
author = {Sabatini, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {asymptotical stability; periodic solutions; bifurcation parameter; Lefschetz Fixed Point theorem; Poincaré operator},
language = {eng},
pages = {1-9},
publisher = {Seminario Matematico of the University of Padua},
title = {Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.},
url = {http://eudml.org/doc/108288},
volume = {89},
year = {1993},
}

TY - JOUR
AU - Sabatini, M.
TI - Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 1
EP - 9
LA - eng
KW - asymptotical stability; periodic solutions; bifurcation parameter; Lefschetz Fixed Point theorem; Poincaré operator
UR - http://eudml.org/doc/108288
ER -

References

top
  1. [1] N.P. Bathia - G.P. Szegö, Stability theory of dynamical systems, Die Grund. der Math. Wiss. in Einz., vol. 161, Springer-Verlag, Berlin (1970). MR289890
  2. [2] S.R. Bernfeld - L. Salvadori - F. Visentin, Discrete dynamical systems and bifurcation for periodic differential equation, Nonlinear Anal., Theory, Methods Appl., 12-9 (1988), pp. 881-893. Zbl0653.34031MR960633
  3. [3] S.N. Chow - J. K. HALE, Methods of Bifurcation Theory, Springer, New York (1982). Zbl0487.47039MR660633
  4. [4] W. Hahn, Stability of Motion, Die Grund. der Math. Wiss. in Einz., vol. 138, Springer-Verlag, Berlin (1967). Zbl0189.38503MR223668
  5. [5] J. Hale, Ordinary Differential Equations, Pure Appl. Math., vol. XXI, Wiley-Interscience, New York (1980). Zbl0186.40901MR587488
  6. [6] F. Marchetti - P. Negrini - L. Salvadori - M. Scalia, Liapunov direct method in approaching bifurcation problems, Ann. Mat. Pura Appl. (IV), 108 (1976), pp. 211- 226. Zbl0332.34047MR445076
  7. [7] L. Salvadori, Bifurcation and stability problems for periodic differential systems, Proc. Conf. on Non Linear Oscillations of Conservative Systems (1985), pp. 305-317 (A. AMBROSETTI, ed.), Pitagora, Bologna. 
  8. [8] G. Sansone - R. Conti, Non-linear Differential Equations, MacMillan Company, New York (1964). Zbl0128.08403MR177153
  9. [9] E.H. Spanier, Algebraic Topology, McGraw-Hill, Bombay (1966). Zbl0145.43303MR210112
  10. [10] T. Yoshizawa, Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, Tokio (1966). Zbl0144.10802MR208086

NotesEmbed ?

top

You must be logged in to post comments.