Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.

M. Sabatini

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 89, page 1-9
  • ISSN: 0041-8994

How to cite

top

Sabatini, M.. "Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.." Rendiconti del Seminario Matematico della Università di Padova 89 (1993): 1-9. <http://eudml.org/doc/108288>.

@article{Sabatini1993,
author = {Sabatini, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {asymptotical stability; periodic solutions; bifurcation parameter; Lefschetz Fixed Point theorem; Poincaré operator},
language = {eng},
pages = {1-9},
publisher = {Seminario Matematico of the University of Padua},
title = {Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.},
url = {http://eudml.org/doc/108288},
volume = {89},
year = {1993},
}

TY - JOUR
AU - Sabatini, M.
TI - Bifurcation of periodic solutions from inversion of stability of periodic O.D.E.'S.
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 89
SP - 1
EP - 9
LA - eng
KW - asymptotical stability; periodic solutions; bifurcation parameter; Lefschetz Fixed Point theorem; Poincaré operator
UR - http://eudml.org/doc/108288
ER -

References

top
  1. [1] N.P. Bathia - G.P. Szegö, Stability theory of dynamical systems, Die Grund. der Math. Wiss. in Einz., vol. 161, Springer-Verlag, Berlin (1970). MR289890
  2. [2] S.R. Bernfeld - L. Salvadori - F. Visentin, Discrete dynamical systems and bifurcation for periodic differential equation, Nonlinear Anal., Theory, Methods Appl., 12-9 (1988), pp. 881-893. Zbl0653.34031MR960633
  3. [3] S.N. Chow - J. K. HALE, Methods of Bifurcation Theory, Springer, New York (1982). Zbl0487.47039MR660633
  4. [4] W. Hahn, Stability of Motion, Die Grund. der Math. Wiss. in Einz., vol. 138, Springer-Verlag, Berlin (1967). Zbl0189.38503MR223668
  5. [5] J. Hale, Ordinary Differential Equations, Pure Appl. Math., vol. XXI, Wiley-Interscience, New York (1980). Zbl0186.40901MR587488
  6. [6] F. Marchetti - P. Negrini - L. Salvadori - M. Scalia, Liapunov direct method in approaching bifurcation problems, Ann. Mat. Pura Appl. (IV), 108 (1976), pp. 211- 226. Zbl0332.34047MR445076
  7. [7] L. Salvadori, Bifurcation and stability problems for periodic differential systems, Proc. Conf. on Non Linear Oscillations of Conservative Systems (1985), pp. 305-317 (A. AMBROSETTI, ed.), Pitagora, Bologna. 
  8. [8] G. Sansone - R. Conti, Non-linear Differential Equations, MacMillan Company, New York (1964). Zbl0128.08403MR177153
  9. [9] E.H. Spanier, Algebraic Topology, McGraw-Hill, Bombay (1966). Zbl0145.43303MR210112
  10. [10] T. Yoshizawa, Stability Theory by Liapunov's Second Method, The Mathematical Society of Japan, Tokio (1966). Zbl0144.10802MR208086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.