Conservative polynomials and yet another action of on plane trees
- [1] Department of Mathematics Ben Gurion University Beer Sheva 84105 P.O.B. 653, , Israel
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 1, page 205-218
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- G. Belyi, On Galois extensions of a maximal cyclotomic field. Math. USSR, Izv. 14 (1980), 247–256. Zbl0429.12004MR534593
- A. Douady, J. Hubbard, A proof of Thurston’s topological characterization of rational functions. Acta Math. 171, No.2 (1993), 263-297. Zbl0806.30027
- A. Kostrikin, Conservative polynomials. In “Stud. Algebra Tbilisi”, 115–129, 1984. Zbl0728.12003
- S. Lando, A. Zvonkin, Graphs on Surfaces and Their Applications. Encyclopedia of Mathematical Sciences 141(II), Berlin: Springer, 2004. Zbl1040.05001MR2036721
- K. Pilgrim, Dessins d’enfants and Hubbard trees, Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 5, 671–693. Zbl1066.14503
- A. Poirier, On postcritically finite polynomials, part 1: critical portraits. Preprint, arxiv:math. DS/9305207. Zbl1179.37066
- A. Poirier, On postcritically finite polynomials, part 2: Hubbard trees. Preprint, arxiv:math. DS/9307235.
- L. Schneps, Dessins d’enfants on the Riemann sphere. In “The Grothendieck Theory of Dessins D’enfants” (L. Shneps eds.), Cambridge University Press, London mathematical society lecture notes series 200 (1994), 47–77. Zbl0823.14017
- J. Silverman, The field of definition for dynamical systems on . Compos. Math. 98, No.3 (1995), 269–304. Zbl0849.11090MR1351830
- S. Smale, The fundamental theorem of algebra and complexity theory. Bull. Amer. Math. Soc. 4 (1981), 1–36. Zbl0456.12012MR590817
- D. Tischler, Critical points and values of complex polynomials. J. of Complexity 5 (1989), 438–456. Zbl0728.12004MR1028906