On the algebraic and arithmetical structure of generalized polynomial algebras

Franz Halter-Koch

Rendiconti del Seminario Matematico della Università di Padova (1993)

  • Volume: 90, page 121-140
  • ISSN: 0041-8994

How to cite

top

Halter-Koch, Franz. "On the algebraic and arithmetical structure of generalized polynomial algebras." Rendiconti del Seminario Matematico della Università di Padova 90 (1993): 121-140. <http://eudml.org/doc/108298>.

@article{Halter1993,
author = {Halter-Koch, Franz},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {large -form; factorial ring; large polynomial; large power series ring; Krull domain; number of monomials},
language = {eng},
pages = {121-140},
publisher = {Seminario Matematico of the University of Padua},
title = {On the algebraic and arithmetical structure of generalized polynomial algebras},
url = {http://eudml.org/doc/108298},
volume = {90},
year = {1993},
}

TY - JOUR
AU - Halter-Koch, Franz
TI - On the algebraic and arithmetical structure of generalized polynomial algebras
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1993
PB - Seminario Matematico of the University of Padua
VL - 90
SP - 121
EP - 140
LA - eng
KW - large -form; factorial ring; large polynomial; large power series ring; Krull domain; number of monomials
UR - http://eudml.org/doc/108298
ER -

References

top
  1. [1] D.D. Anderson - D.F. Anderson - M. Zafrullah, Factorization in integral domains, J. Pure Appl. Algebra, 69 (1990), pp. 1-19. Zbl0727.13007MR1082441
  2. [2] B. Ballet, Diviseurs dans les anneaus des séries formelles en une infinité d'indéterminées, Canad. Math. Bull, 27 (1984), pp. 301-308. Zbl0583.13011MR749636
  3. [3] N. Bourbaki, Algèbre, chap. 1 à 3, Hermann, Paris (1970); chap. 4 à 7, Masson, Paris (1966). MR274237
  4. [4] N. Bourbaki, General Topology, Part 1 and 2, Hermann, Paris (1966). Zbl0145.19302
  5. [5] N. Bourbaki, Theory of Sets, Hermann, Paris (1968). MR240238
  6. [6] E.D. Cashwell - C.J. Everett, Formal power series, Pac. J. Math., 13 (1963), pp. 45-64. Zbl0117.02603MR155852
  7. [7] D.Z. Djokoci, A representation theorem for (X1 - 1) (X2 - 1) ... (Xn - 1) and its applications, Ann. Polon. Math., 22 (1969), pp. 189-198. Zbl0187.39903MR265798
  8. [8] R.M. Fossum, The Divisor Class Group of a Krull Domain, Springer (1973). Zbl0256.13001MR382254
  9. [9] R. Gilmer, Power series over a Krull domain, Pacific J. Math., 29 (1969), pp. 543-549. Zbl0179.34502MR245571
  10. [10] F. Halter-Koch, Finiteness theorem for factorizations, Semigroup Forum, 44 (1992), pp. 112-117. Zbl0751.20046MR1138690
  11. [11] F. Halter - KOCH, On products of additive functions (a third approach), Aequat. Math., 45 (1993), p. 281-284. Zbl0777.12001MR1212392
  12. [12] F. Halter-Koch - L. Reich - J. Schwaiger, On products of additive functions, Aequat. Math., 45 (1993), p. 83-88. Zbl0773.39006MR1201399
  13. [13] K.H. Heuvers, Functional equations which characterize n-forms and homogeneous functions of degree n, Aequat. Math., 21 (1980), pp. 319-322. Zbl0479.39004MR615807
  14. [14] S. Lang, Algebra, 2nd ed., Addison-Wesley (1984). MR783636
  15. [15] H. Nishimura, On the unique factorization theorem for formal power series, J. Math. Kyoto Univ., 7 (1967), pp. 151-160. Zbl0159.33401MR225766

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.