# On multiple analogues of Ramanujan’s formulas for certain Dirichlet series

Hirofumi Tsumura^{[1]}

- [1] Department of Mathematics and Information Sciences Tokyo Metropolitan University Minami-Ohsawa, Hachioji 192-0397 Tokyo, Japan

Journal de Théorie des Nombres de Bordeaux (2008)

- Volume: 20, Issue: 1, page 219-226
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topTsumura, Hirofumi. "On multiple analogues of Ramanujan’s formulas for certain Dirichlet series." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 219-226. <http://eudml.org/doc/10830>.

@article{Tsumura2008,

abstract = {In this paper, we prove multiple analogues of famous Ramanujan’s formulas for certain Dirichlet series which were introduced in his well-known notebooks. Furthermore, we prove some multiple versions of analogous formulas of Ramanujan which were given by Berndt and so on.},

affiliation = {Department of Mathematics and Information Sciences Tokyo Metropolitan University Minami-Ohsawa, Hachioji 192-0397 Tokyo, Japan},

author = {Tsumura, Hirofumi},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {multiple zeta values},

language = {eng},

number = {1},

pages = {219-226},

publisher = {Université Bordeaux 1},

title = {On multiple analogues of Ramanujan’s formulas for certain Dirichlet series},

url = {http://eudml.org/doc/10830},

volume = {20},

year = {2008},

}

TY - JOUR

AU - Tsumura, Hirofumi

TI - On multiple analogues of Ramanujan’s formulas for certain Dirichlet series

JO - Journal de Théorie des Nombres de Bordeaux

PY - 2008

PB - Université Bordeaux 1

VL - 20

IS - 1

SP - 219

EP - 226

AB - In this paper, we prove multiple analogues of famous Ramanujan’s formulas for certain Dirichlet series which were introduced in his well-known notebooks. Furthermore, we prove some multiple versions of analogous formulas of Ramanujan which were given by Berndt and so on.

LA - eng

KW - multiple zeta values

UR - http://eudml.org/doc/10830

ER -

## References

top- B. C. Berndt, Generalized Dedekind eta-functions and generalized Dedekind sums. Trans. Amer. Math. Soc. 178 (1973), 495–508. Zbl0262.10015MR371817
- B. C. Berndt, Generalized Eisenstein series and modified Dedekind sums. J. Reine Angew. Math. 272 (1974), 182–193. Zbl0294.10018MR360471
- B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mountain J. Math. 7 (1977), 147–189. Zbl0365.10021MR429703
- B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan. J. Reine Angew Math. 303/304 (1978), 332–365. Zbl0384.10011MR514690
- B. C. Berndt, Ramanujan’s Notebooks, part II. Springer-Verlag, New-York, 1989. Zbl0716.11001
- B. C. Berndt, Ramanujan’s Notebooks, part V. Springer-Verlag, New-York, 1998. Zbl0886.11001
- K. Dilcher, Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Memoirs of Amer. Math. Soc. 386 (1988). Zbl0645.10015MR938890
- M. E. Hoffman, Multiple harmonic series. Pacific J. Math. 152 (1992), 275–290. Zbl0763.11037MR1141796
- K. Katayama, On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers. Acta Arith. 22 (1973), 149–155. Zbl0222.10040
- M. Lerch, Sur la fonction $\zeta \left(s\right)$ pour valeurs impaires de l’argument. J. Sci. Math. Astron. pub. pelo Dr. F. Gomes Teixeira, Coimbra 14 (1901), 65–69.
- S. L. Malurkar, On the application of Herr Mellin’s integrals to some series. J. Indian Math. Soc. 16 (1925/1926), 130–138. Zbl51.0267.06
- K. Matsumoto, H. Tsumura, A new method of producing functional relations among multiple zeta-functions. Quart. J. Math. 59 (2008), 55–83. Zbl1151.11045MR2392501
- D. Zagier, Values of zeta functions and their applications. In “Proc. First Congress of Math., Paris”, vol. II, Progress in Math. 120, Birkhäuser, 1994, 497–512. Zbl0822.11001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.