On uniform lower bound of the Galois images associated to elliptic curves
Keisuke Arai[1]
- [1] Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914, Japan
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 1, page 23-43
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topArai, Keisuke. "On uniform lower bound of the Galois images associated to elliptic curves." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 23-43. <http://eudml.org/doc/10831>.
@article{Arai2008,
abstract = {Let $p$ be a prime and let $K$ be a number field. Let $\rho _\{E,p\}:\mathrm\{G\}_K \rightarrow \mathrm\{Aut\}(T_p E)\cong \mathrm\{GL\}_2(\mathbb\{Z\}_p)$ be the Galois representation given by the Galois action on the $p$-adic Tate module of an elliptic curve $E$ over $K$. Serre showed that the image of $\rho _\{E,p\}$ is open if $E$ has no complex multiplication. For an elliptic curve $E$ over $K$ whose $j$-invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of $\rho _\{E,p\}$.},
affiliation = {Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914, Japan},
author = {Arai, Keisuke},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {23-43},
publisher = {Université Bordeaux 1},
title = {On uniform lower bound of the Galois images associated to elliptic curves},
url = {http://eudml.org/doc/10831},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Arai, Keisuke
TI - On uniform lower bound of the Galois images associated to elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 1
SP - 23
EP - 43
AB - Let $p$ be a prime and let $K$ be a number field. Let $\rho _{E,p}:\mathrm{G}_K \rightarrow \mathrm{Aut}(T_p E)\cong \mathrm{GL}_2(\mathbb{Z}_p)$ be the Galois representation given by the Galois action on the $p$-adic Tate module of an elliptic curve $E$ over $K$. Serre showed that the image of $\rho _{E,p}$ is open if $E$ has no complex multiplication. For an elliptic curve $E$ over $K$ whose $j$-invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of $\rho _{E,p}$.
LA - eng
UR - http://eudml.org/doc/10831
ER -
References
top- P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques. Modular functions of one variable, II, 143–316. Lecture Notes in Math. 349. Springer, Berlin, 1973. Zbl0281.14010MR337993
- B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur). Séminaire Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 782, 4, 209–227. Zbl0832.14024MR1321648
- G. Faltings, Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27. Springer, New York, 1986. Zbl0602.14044MR718935
- S. Kamienny, Torsion points on elliptic curves and -coefficients of modular forms. Invent. Math. 109 (1992), no. 2, 221–229. Zbl0773.14016MR1172689
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies 108. Princeton University Press, Princeton, NJ, 1985. Zbl0576.14026MR772569
- D.-S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. Zbl0331.14010MR434947
- J. Manin, The -torsion of elliptic curves is uniformly bounded. Translated from the Russian original [Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465]. Mathematics of the USSR-Izvestija 3 (1969), No. 3-4, 433–438. Zbl0205.25002MR272786
- B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études Sci. 47 (1977), 33–186. Zbl0394.14008MR488287
- B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601. Springer, Berlin, 1977. Zbl0357.14005MR450283
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44 (1978), no. 2, 129–162. Zbl0386.14009MR482230
- L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437–449. Zbl0936.11037MR1369424
- F. Momose, Rational points on the modular curves . Compositio Math. 52 (1984), no. 1, 115–137. Zbl0574.14023MR742701
- F. Momose, Isogenies of prime degree over number fields. Compositio Math. 97 (1995), no. 3, 329–348. Zbl1044.11582MR1353278
- K. Nakata, On the -adic representation associated to an elliptic curve defined over . (Japanese), Number Theory Symposium in Kinosaki, December 1979, 221–235.
- P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew. Math. 506 (1999), 85–116. Zbl0919.11040MR1665681
- P. Parent, Towards the triviality of for . Compositio Math. 141 (2005), no. 3, 561–572. Zbl1167.11310MR2135276
- M. Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires. To appear in Pacific J. Math. MR2375318
- J.-P. Serre, Abelian -adic representations and elliptic curves. Lecture at McGill University. W. A. Benjamin Inc., New York-Amsterdam, 1968. Zbl0186.25701MR263823
- J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331. Zbl0235.14012
- J.-P. Serre, Représentations -adiques. Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193. Japan Soc. Promotion Sci., Tokyo, 1977. Zbl0406.14015MR476753
- J.-P. Serre, Points rationnels des courbes modulaires [d’après B. Mazur]. Séminaire Bourbaki, 30e année (1977/78), Exp. No. 511, 89–100. Lecture Notes in Math. 710. Springer, Berlin, 1979. Zbl0411.14005
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1994. Zbl0872.11023MR1291394
- J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.