On uniform lower bound of the Galois images associated to elliptic curves
Keisuke Arai[1]
- [1] Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914, Japan
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 1, page 23-43
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topReferences
top- P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques. Modular functions of one variable, II, 143–316. Lecture Notes in Math. 349. Springer, Berlin, 1973. Zbl0281.14010MR337993
- B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur). Séminaire Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 782, 4, 209–227. Zbl0832.14024MR1321648
- G. Faltings, Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27. Springer, New York, 1986. Zbl0602.14044MR718935
- S. Kamienny, Torsion points on elliptic curves and -coefficients of modular forms. Invent. Math. 109 (1992), no. 2, 221–229. Zbl0773.14016MR1172689
- N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies 108. Princeton University Press, Princeton, NJ, 1985. Zbl0576.14026MR772569
- D.-S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. Zbl0331.14010MR434947
- J. Manin, The -torsion of elliptic curves is uniformly bounded. Translated from the Russian original [Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465]. Mathematics of the USSR-Izvestija 3 (1969), No. 3-4, 433–438. Zbl0205.25002MR272786
- B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études Sci. 47 (1977), 33–186. Zbl0394.14008MR488287
- B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601. Springer, Berlin, 1977. Zbl0357.14005MR450283
- B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44 (1978), no. 2, 129–162. Zbl0386.14009MR482230
- L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437–449. Zbl0936.11037MR1369424
- F. Momose, Rational points on the modular curves . Compositio Math. 52 (1984), no. 1, 115–137. Zbl0574.14023MR742701
- F. Momose, Isogenies of prime degree over number fields. Compositio Math. 97 (1995), no. 3, 329–348. Zbl1044.11582MR1353278
- K. Nakata, On the -adic representation associated to an elliptic curve defined over . (Japanese), Number Theory Symposium in Kinosaki, December 1979, 221–235.
- P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew. Math. 506 (1999), 85–116. Zbl0919.11040MR1665681
- P. Parent, Towards the triviality of for . Compositio Math. 141 (2005), no. 3, 561–572. Zbl1167.11310MR2135276
- M. Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires. To appear in Pacific J. Math. MR2375318
- J.-P. Serre, Abelian -adic representations and elliptic curves. Lecture at McGill University. W. A. Benjamin Inc., New York-Amsterdam, 1968. Zbl0186.25701MR263823
- J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331. Zbl0235.14012
- J.-P. Serre, Représentations -adiques. Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193. Japan Soc. Promotion Sci., Tokyo, 1977. Zbl0406.14015MR476753
- J.-P. Serre, Points rationnels des courbes modulaires [d’après B. Mazur]. Séminaire Bourbaki, 30e année (1977/78), Exp. No. 511, 89–100. Lecture Notes in Math. 710. Springer, Berlin, 1979. Zbl0411.14005
- G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1994. Zbl0872.11023MR1291394
- J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210