On uniform lower bound of the Galois images associated to elliptic curves

Keisuke Arai[1]

  • [1] Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914, Japan

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 1, page 23-43
  • ISSN: 1246-7405

Abstract

top
Let p be a prime and let K be a number field. Let ρ E , p : G K Aut ( T p E ) GL 2 ( p ) be the Galois representation given by the Galois action on the p -adic Tate module of an elliptic curve E over K . Serre showed that the image of ρ E , p is open if E has no complex multiplication. For an elliptic curve E over K whose j -invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of ρ E , p .

How to cite

top

Arai, Keisuke. "On uniform lower bound of the Galois images associated to elliptic curves." Journal de Théorie des Nombres de Bordeaux 20.1 (2008): 23-43. <http://eudml.org/doc/10831>.

@article{Arai2008,
abstract = {Let $p$ be a prime and let $K$ be a number field. Let $\rho _\{E,p\}:\mathrm\{G\}_K \rightarrow \mathrm\{Aut\}(T_p E)\cong \mathrm\{GL\}_2(\mathbb\{Z\}_p)$ be the Galois representation given by the Galois action on the $p$-adic Tate module of an elliptic curve $E$ over $K$. Serre showed that the image of $\rho _\{E,p\}$ is open if $E$ has no complex multiplication. For an elliptic curve $E$ over $K$ whose $j$-invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of $\rho _\{E,p\}$.},
affiliation = {Graduate School of Mathematical Sciences The University of Tokyo Tokyo 153-8914, Japan},
author = {Arai, Keisuke},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
number = {1},
pages = {23-43},
publisher = {Université Bordeaux 1},
title = {On uniform lower bound of the Galois images associated to elliptic curves},
url = {http://eudml.org/doc/10831},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Arai, Keisuke
TI - On uniform lower bound of the Galois images associated to elliptic curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 1
SP - 23
EP - 43
AB - Let $p$ be a prime and let $K$ be a number field. Let $\rho _{E,p}:\mathrm{G}_K \rightarrow \mathrm{Aut}(T_p E)\cong \mathrm{GL}_2(\mathbb{Z}_p)$ be the Galois representation given by the Galois action on the $p$-adic Tate module of an elliptic curve $E$ over $K$. Serre showed that the image of $\rho _{E,p}$ is open if $E$ has no complex multiplication. For an elliptic curve $E$ over $K$ whose $j$-invariant does not appear in an exceptional finite set (which is non-explicit however), we give an explicit uniform lower bound of the size of the image of $\rho _{E,p}$.
LA - eng
UR - http://eudml.org/doc/10831
ER -

References

top
  1. P. Deligne, M. Rapoport, Les schémas de modules de courbes elliptiques. Modular functions of one variable, II, 143–316. Lecture Notes in Math. 349. Springer, Berlin, 1973. Zbl0281.14010MR337993
  2. B. Edixhoven, Rational torsion points on elliptic curves over number fields (after Kamienny and Mazur). Séminaire Bourbaki, Vol. 1993/94. Astérisque No. 227 (1995), Exp. No. 782, 4, 209–227. Zbl0832.14024MR1321648
  3. G. Faltings, Finiteness theorems for abelian varieties over number fields. Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381] by Edward Shipz. Arithmetic geometry (Storrs, Conn., 1984), 9–27. Springer, New York, 1986. Zbl0602.14044MR718935
  4. S. Kamienny, Torsion points on elliptic curves and q -coefficients of modular forms. Invent. Math. 109 (1992), no. 2, 221–229. Zbl0773.14016MR1172689
  5. N. Katz, B. Mazur, Arithmetic moduli of elliptic curves. Annals of Mathematics Studies 108. Princeton University Press, Princeton, NJ, 1985. Zbl0576.14026MR772569
  6. D.-S. Kubert, Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. (3) 33 (1976), no. 2, 193–237. Zbl0331.14010MR434947
  7. J. Manin, The p -torsion of elliptic curves is uniformly bounded. Translated from the Russian original [Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465]. Mathematics of the USSR-Izvestija 3 (1969), No. 3-4, 433–438. Zbl0205.25002MR272786
  8. B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Études Sci. 47 (1977), 33–186. Zbl0394.14008MR488287
  9. B. Mazur, Rational points on modular curves. Modular functions of one variable V, 107–148. Lecture Notes in Math. 601. Springer, Berlin, 1977. Zbl0357.14005MR450283
  10. B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent. Math. 44 (1978), no. 2, 129–162. Zbl0386.14009MR482230
  11. L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), no. 1-3, 437–449. Zbl0936.11037MR1369424
  12. F. Momose, Rational points on the modular curves X split ( p ) . Compositio Math. 52 (1984), no. 1, 115–137. Zbl0574.14023MR742701
  13. F. Momose, Isogenies of prime degree over number fields. Compositio Math. 97 (1995), no. 3, 329–348. Zbl1044.11582MR1353278
  14. K. Nakata, On the 2 -adic representation associated to an elliptic curve defined over . (Japanese), Number Theory Symposium in Kinosaki, December 1979, 221–235. 
  15. P. Parent, Bornes effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew. Math. 506 (1999), 85–116. Zbl0919.11040MR1665681
  16. P. Parent, Towards the triviality of X 0 + ( p r ) ( ) for r &gt; 1 . Compositio Math. 141 (2005), no. 3, 561–572. Zbl1167.11310MR2135276
  17. M. Rebolledo, Module supersingulier, formule de Gross-Kudla et points rationnels de courbes modulaires. To appear in Pacific J. Math. MR2375318
  18. J.-P. Serre, Abelian l -adic representations and elliptic curves. Lecture at McGill University. W. A. Benjamin Inc., New York-Amsterdam, 1968. Zbl0186.25701MR263823
  19. J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Invent. Math. 15 (1972), no. 4, 259–331. Zbl0235.14012
  20. J.-P. Serre, Représentations l -adiques. Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976), 177–193. Japan Soc. Promotion Sci., Tokyo, 1977. Zbl0406.14015MR476753
  21. J.-P. Serre, Points rationnels des courbes modulaires X 0 ( N ) [d’après B. Mazur]. Séminaire Bourbaki, 30e année (1977/78), Exp. No. 511, 89–100. Lecture Notes in Math. 710. Springer, Berlin, 1979. Zbl0411.14005
  22. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1994. Zbl0872.11023MR1291394
  23. J. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics 106. Springer-Verlag, New York, 1986. Zbl0585.14026MR817210

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.