A collar neighborhood theorem for a complex manifold

C. Denson Hill; Mauro Nacinovich

Rendiconti del Seminario Matematico della Università di Padova (1994)

  • Volume: 91, page 23-30
  • ISSN: 0041-8994

How to cite

top

Hill, C. Denson, and Nacinovich, Mauro. "A collar neighborhood theorem for a complex manifold." Rendiconti del Seminario Matematico della Università di Padova 91 (1994): 23-30. <http://eudml.org/doc/108321>.

@article{Hill1994,
author = {Hill, C. Denson, Nacinovich, Mauro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {paracompact manifold; almost complex structure; pseudoconvex boundary; complex structure},
language = {eng},
pages = {23-30},
publisher = {Seminario Matematico of the University of Padua},
title = {A collar neighborhood theorem for a complex manifold},
url = {http://eudml.org/doc/108321},
volume = {91},
year = {1994},
}

TY - JOUR
AU - Hill, C. Denson
AU - Nacinovich, Mauro
TI - A collar neighborhood theorem for a complex manifold
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 91
SP - 23
EP - 30
LA - eng
KW - paracompact manifold; almost complex structure; pseudoconvex boundary; complex structure
UR - http://eudml.org/doc/108321
ER -

References

top
  1. [1] A. Andreotti - H. GRAUERT, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), pp. 193-259. Zbl0106.05501MR150342
  2. [2] E. Bishop, Mappings of partially analytic spaces, Ann. Math., 83 (1961), pp. 209-242. Zbl0118.07701MR123732
  3. [3] D. Catlin, A Newlander-Nirenberg theorem for manifolds with boundary, Mich. Math. J., 35 (1988), pp. 233-240. Zbl0679.53029MR959270
  4. [4] R. Dwilewicz, Embeddability of smooth Cauchy-Riemann manifolds, Ann. di Mat., 139 (1985), pp. 15-43. Zbl0563.32010MR798167
  5. [5] N. Hanges - H. JACOBOWITZ, A remark on almost complex structures with boundary, Amer. J. Math., 111 (1989), pp. 53-64. Zbl0847.32016MR980299
  6. [6] D. Heunemann, Extension of the complex structure from Stein manifolds with strictly pseudoconvex boundary, Preprint, Akad. Wiss. DDRBerlin (1984). Zbl0552.32011MR855943
  7. [7] C.D. Hill, What is the notion of a complex manifold with a smooth boundary?, in Prospect in Algebraic Analysis, Vol. 1 (KASHIWARA and KAWAI, eds.) Academic Press, New York (1988), pp. 185-201. Zbl0682.32007MR992454
  8. [8] C.D. Hill, A family of exotic structures on S2 x S2, in Analyse Complexe Multivariable: Recents Developpements (A. MÉRIL, ed.), Guadalupe (1988), Edit E1, Commenda di Rende (1991), pp. 105-110. Zbl0910.32017MR1228874
  9. [9] C.D. Hill, Counterexamples to Newlander-Nirenberg up to the boundary, Proc. Symp. Pure Math., 52 (3) (1991), pp. 191-197. Zbl0751.53012MR1128593
  10. [10] C.D. Hill - M. Nacinovich, Embeddable CR manifolds with nonembeddable smooth boundaries, to appear in B.U.M.I. Zbl0809.53063
  11. [11] R. Narasimhan, Imbedding of holomorphically complete complex spaces, Amer. J. Math., 82 (1960), pp. 917-934. Zbl0104.05402MR148942
  12. [12] A. Newlander - L. NIRENBERG, Complex coordinates in almost complex manifolds, Ann. Math., 65 (1957), pp. 391-404. Zbl0079.16102MR88770

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.