Well posedness in C for a weakly hyperbolic second order equation

Piero D'Ancona

Rendiconti del Seminario Matematico della Università di Padova (1994)

  • Volume: 91, page 65-83
  • ISSN: 0041-8994

How to cite

top

D'Ancona, Piero. "Well posedness in $C^\infty $ for a weakly hyperbolic second order equation." Rendiconti del Seminario Matematico della Università di Padova 91 (1994): 65-83. <http://eudml.org/doc/108328>.

@article{DAncona1994,
author = {D'Ancona, Piero},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Oleinik conditions; global well-posedness in },
language = {eng},
pages = {65-83},
publisher = {Seminario Matematico of the University of Padua},
title = {Well posedness in $C^\infty $ for a weakly hyperbolic second order equation},
url = {http://eudml.org/doc/108328},
volume = {91},
year = {1994},
}

TY - JOUR
AU - D'Ancona, Piero
TI - Well posedness in $C^\infty $ for a weakly hyperbolic second order equation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 91
SP - 65
EP - 83
LA - eng
KW - Oleinik conditions; global well-posedness in
UR - http://eudml.org/doc/108328
ER -

References

top
  1. [CS] F. Colombini - S. Spagnolo, An example of a weakly hyperbolic Cauchy problem not well posed, Acta Math., 148 (1982), pp. 243-253. Zbl0517.35053MR666112
  2. [D] P. D'Ancona, Gevrey well posedness of an abstract Cauchy problem of weakly hyperbolic type, Publ. RIMS Kyoto Univ., 24 (1988), pp. 433-449. Zbl0706.35077MR966182
  3. [Fe] H. Federer, Geometric measure theory, Springer, Berlin (1969). Zbl0874.49001
  4. [Gi] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhaüser, Boston (1984). Zbl0545.49018MR775682
  5. [Ma] V. Maz'ja, Sobolev Spaces, Springer, Berlin (1985). MR817985
  6. [Ni1] T. Nishitani, The Cauchy problem for weakly hyperbolic equations of second order, Comm. PDEs, 5 (1980), pp. 1273-1296. Zbl0497.35053MR593968
  7. [Ni2] T. Nishitani, Sur les équations hyperboliques à coefficients qui sont hölderiens en t et de classe de Gevrey en x, Sci. Math., 2e série, 107 (1983), pp. 113-138. Zbl0536.35042MR704720
  8. [Ni3] T. Nishitani, A necessary and sufficient condition for the hyperbolicity of second order equations with two independent variables, J. Math. Kyoto Univ., 24 (1984), pp. 91-104. Zbl0552.35049MR737827
  9. [O1] O.A. Oleinik, On the Cauchy problem for weakly hyperbolic equations, Comm. Pure Appl. Math., 23 (1970), pp. 569-586. MR264227

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.