Existence results for infinite dimensional differential equations without compactness
Giovanni Colombo; Barnabas M. Garay
Rendiconti del Seminario Matematico della Università di Padova (1994)
- Volume: 92, page 127-133
- ISSN: 0041-8994
Access Full Article
topHow to cite
topColombo, Giovanni, and Garay, Barnabas M.. "Existence results for infinite dimensional differential equations without compactness." Rendiconti del Seminario Matematico della Università di Padova 92 (1994): 127-133. <http://eudml.org/doc/108330>.
@article{Colombo1994,
author = {Colombo, Giovanni, Garay, Barnabas M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Banach space; Cauchy problem; existence},
language = {eng},
pages = {127-133},
publisher = {Seminario Matematico of the University of Padua},
title = {Existence results for infinite dimensional differential equations without compactness},
url = {http://eudml.org/doc/108330},
volume = {92},
year = {1994},
}
TY - JOUR
AU - Colombo, Giovanni
AU - Garay, Barnabas M.
TI - Existence results for infinite dimensional differential equations without compactness
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 92
SP - 127
EP - 133
LA - eng
KW - Banach space; Cauchy problem; existence
UR - http://eudml.org/doc/108330
ER -
References
top- [1] A. Cellina, On the nonexistence of solutions of differential equations in nonreflexive spaces, Bull. Amer. Math. Soc., 78 (1972), pp. 1069-1072. Zbl0277.34066MR312017
- [2] A. Cellina, On the local existence of solutions of ordinary differential equations, Bull. Pol. Acad. Sci., 20 (1972), pp. 293-296. Zbl0255.34053MR315237
- [3] K. Deimling, Ordinary Differential Equations in Banach Spaces, Lecture Notes in Math., No. 596, Springer, Berlin (1977). Zbl0361.34050MR463601
- [4] J. Dieudonné, Deux exemples singuliers d'équations différentielles, Acta Sci. Math.(Szeged), 12 (1950), pp. 38-40. Zbl0037.06002MR35397
- [5] B.M. Garay, Deleting homeomorphisms and the failure of Peano's existence theorem in infinite-dimensional Banach spaces, Funkcial. Ekvac., 34 (1991), pp. 85-93. Zbl0734.34055MR1116881
- [6] A.N. Godunov, The Peano theorem in Banach spaces, Funktsional. Anal. i Prilozhen., 9 (1975), pp. 59-60 (Russian). Zbl0314.34059MR364797
- [7] K. Goebel - J. Wosko, Making a hole in the space, Proc. Amer. Math. Soc., 114 (1992), pp. 475-476. Zbl0747.46011MR1065949
- [8] V. Lakshmikantham - S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergamon, Oxford (1981). Zbl0456.34002MR616449
- [9] A. Lasota - J.A. Yorke, The generic property of existence of solutions of differential equations in Banach spaces, J. Differ. Equat., 13 (1973), pp. 1-12. Zbl0259.34070MR335994
- [10] R.H. Martin, Nonlinear Operators and Differential Equations in Banach Spaces, Wiley, New York (1976). Zbl0333.47023MR492671
- [11] N.H. Paves, Nonlinear Evolution Operators and Semigroups: Applications to Partial Differential Equations, Lecture Notes in Math., No. 1260, Springer, Berlin (1987). Zbl0626.35003MR900380
- [12] J. Saint-Raymond, Une équation différentielle sans solution, in: Initiation Seminar on Analysis: 1980/81, Comm. No. C2, 7 pp., Publ. Math. Univ. P. et M. Curie, 46, Univ. Paris VI, Paris (1981). Zbl0534.34005MR670806
- [13] E. Schechter, A survey of local existence theories for abstract nonlinear initial value problems, in: Nonlinear Semigroups, PDE's and Attractors, edited by T. L. GILL and W. W. ZACHARY, Lecture Notes in Mathematics, No. 1394, Springer, Berlin (1989), pp. 136-184. Zbl0678.34005MR1021021
- [14] S. Schmidt, Zwei Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen, Comment. Math. Prace Mat., 28 (1989), pp. 345-353. Zbl0681.34054MR1024948
- [15] S. Schmidt, Existenzsätze für gewöhnliche Differentialgleichungen in Banachräumen, Funkcial. Ekvac., 35 (1992), pp. 199-222. Zbl0785.34045MR1189893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.