A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice
Rendiconti del Seminario Matematico della Università di Padova (1994)
- Volume: 92, page 179-194
- ISSN: 0041-8994
Access Full Article
topHow to cite
topDai Pra, Paolo. "A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice." Rendiconti del Seminario Matematico della Università di Padova 92 (1994): 179-194. <http://eudml.org/doc/108333>.
@article{DaiPra1994,
author = {Dai Pra, Paolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stochastic infinite spin-flip system; Gibbs measure; large deviation principle},
language = {eng},
pages = {179-194},
publisher = {Seminario Matematico of the University of Padua},
title = {A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice},
url = {http://eudml.org/doc/108333},
volume = {92},
year = {1994},
}
TY - JOUR
AU - Dai Pra, Paolo
TI - A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 92
SP - 179
EP - 194
LA - eng
KW - stochastic infinite spin-flip system; Gibbs measure; large deviation principle
UR - http://eudml.org/doc/108333
ER -
References
top- [1] P. Dai Pra, A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optimiz.23 (1991), pp. 313-329. Zbl0728.93079MR1095665
- [2] P. Dai Pra, Space-time large deviations for interacting particle systems, Comm. Pure Appl. Math., 46 (1993), pp. 387-422. Zbl0797.60028MR1202962
- [3] P. Dai Pra, Large deviations and equilibrium measures for stochastic spin systems, Stochastic Processes and Their Applications, 48 (1993), pp. 9-30. Zbl0789.60020MR1237166
- [4] S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence, John Wiley & Sons (1986). Zbl1089.60005MR838085
- [5] H. Follmer, Random fields and diffusion processes, in Ecole d'Eté de Saint Flour, XV-XVII (1985-87), p. 101-203, Lecture Notes in Mathematics, 1362, Springer-Verlag (1988). Zbl0661.60063MR983373
- [6] T.M. Liggett, Interacting Particle Systems, Springer-Verlag (1988). Zbl0559.60078MR776231
- [7] M. Nagasawa, Transformation of diffusion and Schrödinger processes, Prob. Th. Rel. Fields, 82 (1989), pp. 109-136. Zbl0666.60073MR997433
- [8] M. Pavon - A. Wakolbinger, On free energy, stochastic control and Schrödinger processes, in Proc. Workshop on Modeling and Control of Uncertain Systems, edited by G. B. DI MASI, A. GOMBANI and A. KURZHANSKI, Birkhauser (1991). Zbl0731.93081MR1132281
- [9] S.R. Varadhan, Large Deviations and Applications, CBMS-NSF Regional Conference series in Applied Mathematics, Vol. 46, Society for Industrial and Applied Mathematics, Philadelphia (1984). Zbl0549.60023MR758258
- [10] A. Wakolbinger, A simplified variational characterization of Schrödinger processes, J. Math. Phys, 30 (12) (1989), pp. 2943-2946. Zbl0692.60060MR1025240
- [11] J.C. Zambrini, Stochastic mechanics according to Schrödinger, Phys. Rev.A, 33 (3) (1986), pp. 1532-1548. MR830378
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.