A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice

Paolo Dai Pra

Rendiconti del Seminario Matematico della Università di Padova (1994)

  • Volume: 92, page 179-194
  • ISSN: 0041-8994

How to cite

top

Dai Pra, Paolo. "A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice." Rendiconti del Seminario Matematico della Università di Padova 92 (1994): 179-194. <http://eudml.org/doc/108333>.

@article{DaiPra1994,
author = {Dai Pra, Paolo},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {stochastic infinite spin-flip system; Gibbs measure; large deviation principle},
language = {eng},
pages = {179-194},
publisher = {Seminario Matematico of the University of Padua},
title = {A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice},
url = {http://eudml.org/doc/108333},
volume = {92},
year = {1994},
}

TY - JOUR
AU - Dai Pra, Paolo
TI - A minimum entropy problem for stationary reversible stochastic spin systems on the infinite lattice
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1994
PB - Seminario Matematico of the University of Padua
VL - 92
SP - 179
EP - 194
LA - eng
KW - stochastic infinite spin-flip system; Gibbs measure; large deviation principle
UR - http://eudml.org/doc/108333
ER -

References

top
  1. [1] P. Dai Pra, A stochastic control approach to reciprocal diffusion processes, Appl. Math. Optimiz.23 (1991), pp. 313-329. Zbl0728.93079MR1095665
  2. [2] P. Dai Pra, Space-time large deviations for interacting particle systems, Comm. Pure Appl. Math., 46 (1993), pp. 387-422. Zbl0797.60028MR1202962
  3. [3] P. Dai Pra, Large deviations and equilibrium measures for stochastic spin systems, Stochastic Processes and Their Applications, 48 (1993), pp. 9-30. Zbl0789.60020MR1237166
  4. [4] S.N. Ethier and T.G. Kurtz, Markov processes, characterization and convergence, John Wiley & Sons (1986). Zbl1089.60005MR838085
  5. [5] H. Follmer, Random fields and diffusion processes, in Ecole d'Eté de Saint Flour, XV-XVII (1985-87), p. 101-203, Lecture Notes in Mathematics, 1362, Springer-Verlag (1988). Zbl0661.60063MR983373
  6. [6] T.M. Liggett, Interacting Particle Systems, Springer-Verlag (1988). Zbl0559.60078MR776231
  7. [7] M. Nagasawa, Transformation of diffusion and Schrödinger processes, Prob. Th. Rel. Fields, 82 (1989), pp. 109-136. Zbl0666.60073MR997433
  8. [8] M. Pavon - A. Wakolbinger, On free energy, stochastic control and Schrödinger processes, in Proc. Workshop on Modeling and Control of Uncertain Systems, edited by G. B. DI MASI, A. GOMBANI and A. KURZHANSKI, Birkhauser (1991). Zbl0731.93081MR1132281
  9. [9] S.R. Varadhan, Large Deviations and Applications, CBMS-NSF Regional Conference series in Applied Mathematics, Vol. 46, Society for Industrial and Applied Mathematics, Philadelphia (1984). Zbl0549.60023MR758258
  10. [10] A. Wakolbinger, A simplified variational characterization of Schrödinger processes, J. Math. Phys, 30 (12) (1989), pp. 2943-2946. Zbl0692.60060MR1025240
  11. [11] J.C. Zambrini, Stochastic mechanics according to Schrödinger, Phys. Rev.A, 33 (3) (1986), pp. 1532-1548. MR830378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.