Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems

Fabio Giannoni; Louis Jeanjean; Kazunaga Tanaka

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 93, page 153-176
  • ISSN: 0041-8994

How to cite

top

Giannoni, Fabio, Jeanjean, Louis, and Tanaka, Kazunaga. "Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems." Rendiconti del Seminario Matematico della Università di Padova 93 (1995): 153-176. <http://eudml.org/doc/108353>.

@article{Giannoni1995,
author = {Giannoni, Fabio, Jeanjean, Louis, Tanaka, Kazunaga},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Riemannian structure; variational method; Hilbert manifold; homoclinic orbit},
language = {eng},
pages = {153-176},
publisher = {Seminario Matematico of the University of Padua},
title = {Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems},
url = {http://eudml.org/doc/108353},
volume = {93},
year = {1995},
}

TY - JOUR
AU - Giannoni, Fabio
AU - Jeanjean, Louis
AU - Tanaka, Kazunaga
TI - Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 93
SP - 153
EP - 176
LA - eng
KW - Riemannian structure; variational method; Hilbert manifold; homoclinic orbit
UR - http://eudml.org/doc/108353
ER -

References

top
  1. [1] A. Ambrosetti - M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects (ed. M. MIRANDA), Pitman Research Note in Math. Ser. (1992). Zbl0804.34046MR1190931
  2. [2] A. Ambrosetti - V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89 (1993), pp. 177-194. See also Multiplicité des orbites homoclines pour des Systèmes conservatifs, C. R. Acad. Sci. Paris, 314 (1992), pp. 601-604. Zbl0780.49008MR1229052
  3. [3] V. Benci - F. GIANNONI, Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., 157 (1991), pp. 568-576. Zbl0737.58052MR1112335
  4. [4] M.L. Bertotti, Homoclinics for Lagrangian systems on Riemannian manifolds, Dyn. Sys. Appl., 1 (1992), pp. 341-368. Zbl0769.58020MR1195916
  5. [5] P. Caldiroli, Existence and multiplicity of homoclinic orbits for singular potentials on unbounded domains, Proc. Roy. Soc. Edinburgh (to appear). Zbl0807.34058
  6. [6] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
  7. [7] V. Coti Zelati - P.H. Rabinoeitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
  8. [8] F. Giannoni, On the existence of homoclinic orbits on Riemannian manifolds, Ergodic Theo. Dyn. Sys., 14 (1994), pp. 103-127. Zbl0796.58026MR1268711
  9. [9] F. Giannoni - P.H. Rabinowitz, On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian system, Nonlinear Diff. Eq. Appl., 1 (1994), pp. 1-46. Zbl0823.34050MR1273342
  10. [10] H. Hofer - K. WYSOCKI, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian system, Math. Ann., 288 (1990), pp. 483-503. Zbl0702.34039MR1079873
  11. [11] L. Jeanjean, Existence of connecting orbits in a potential well, Dyn. Sys. Appl. (to appear). Zbl0817.34029MR1304132
  12. [12] V. Kozlov, Calculus of variations in the large and classical mechanics, Russ. Math. Surv., 40 (1985), pp. 37-71. Zbl0579.70020MR786086
  13. [13] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math., 63 (1956), pp. 20-63. Zbl0070.38603MR75639
  14. [14] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press. (1983). Zbl0531.53051
  15. [15] R.S. Palais, Morse theory on Hilbert manifolds, Topology, 2 (1963), pp. 299-340. Zbl0122.10702MR158410
  16. [16] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 6 (1989), pp. 331-346. Zbl0701.58023MR1030854
  17. [17] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburg, 114 (1990), pp. 33-38. Zbl0705.34054MR1051605
  18. [18] P.H. Rabinowitz - K. TANAKA, Some results on connecting orbits for a class of Hamiltonian system, Math. Zeit., 206 (1991), pp. 473-499. Zbl0707.58022MR1095767
  19. [19] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1992), pp. 27-42. Zbl0725.58017MR1143210
  20. [20] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré: Analyse Non Linéaire (to appear). Zbl0803.58013MR1249107
  21. [21] E. Séré, Homoclinic orbits in compact hypersurface in R2N of restricted contact type, preprint. Zbl0840.34046
  22. [22] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 7 (1990), pp. 427-438. Zbl0712.58026MR1138531
  23. [23] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Diff. Eq., 94 (1991), pp. 315-339. Zbl0787.34041MR1137618
  24. [24] K. Tanaka, A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl. (to appear). Zbl0819.34032MR1273347

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.