Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems
Fabio Giannoni; Louis Jeanjean; Kazunaga Tanaka
Rendiconti del Seminario Matematico della Università di Padova (1995)
- Volume: 93, page 153-176
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGiannoni, Fabio, Jeanjean, Louis, and Tanaka, Kazunaga. "Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems." Rendiconti del Seminario Matematico della Università di Padova 93 (1995): 153-176. <http://eudml.org/doc/108353>.
@article{Giannoni1995,
author = {Giannoni, Fabio, Jeanjean, Louis, Tanaka, Kazunaga},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Riemannian structure; variational method; Hilbert manifold; homoclinic orbit},
language = {eng},
pages = {153-176},
publisher = {Seminario Matematico of the University of Padua},
title = {Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems},
url = {http://eudml.org/doc/108353},
volume = {93},
year = {1995},
}
TY - JOUR
AU - Giannoni, Fabio
AU - Jeanjean, Louis
AU - Tanaka, Kazunaga
TI - Homoclinic orbits on non-compact riemannian manifolds for second order hamiltonian systems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 93
SP - 153
EP - 176
LA - eng
KW - Riemannian structure; variational method; Hilbert manifold; homoclinic orbit
UR - http://eudml.org/doc/108353
ER -
References
top- [1] A. Ambrosetti - M.L. Bertotti, Homoclinics for second order conservative systems, in Partial Differential Equations and Related Subjects (ed. M. MIRANDA), Pitman Research Note in Math. Ser. (1992). Zbl0804.34046MR1190931
- [2] A. Ambrosetti - V. Coti Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Sem. Mat. Univ. Padova, 89 (1993), pp. 177-194. See also Multiplicité des orbites homoclines pour des Systèmes conservatifs, C. R. Acad. Sci. Paris, 314 (1992), pp. 601-604. Zbl0780.49008MR1229052
- [3] V. Benci - F. GIANNONI, Homoclinic orbits on compact manifolds, J. Math. Anal. Appl., 157 (1991), pp. 568-576. Zbl0737.58052MR1112335
- [4] M.L. Bertotti, Homoclinics for Lagrangian systems on Riemannian manifolds, Dyn. Sys. Appl., 1 (1992), pp. 341-368. Zbl0769.58020MR1195916
- [5] P. Caldiroli, Existence and multiplicity of homoclinic orbits for singular potentials on unbounded domains, Proc. Roy. Soc. Edinburgh (to appear). Zbl0807.34058
- [6] V. Coti Zelati - I. Ekeland - E. Séré, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), pp. 133-160. Zbl0731.34050MR1070929
- [7] V. Coti Zelati - P.H. Rabinoeitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), pp. 693-727. Zbl0744.34045MR1119200
- [8] F. Giannoni, On the existence of homoclinic orbits on Riemannian manifolds, Ergodic Theo. Dyn. Sys., 14 (1994), pp. 103-127. Zbl0796.58026MR1268711
- [9] F. Giannoni - P.H. Rabinowitz, On the multiplicity of homoclinic orbits on Riemannian manifolds for a class of second order Hamiltonian system, Nonlinear Diff. Eq. Appl., 1 (1994), pp. 1-46. Zbl0823.34050MR1273342
- [10] H. Hofer - K. WYSOCKI, First order elliptic systems and the existence of homoclinic orbits in Hamiltonian system, Math. Ann., 288 (1990), pp. 483-503. Zbl0702.34039MR1079873
- [11] L. Jeanjean, Existence of connecting orbits in a potential well, Dyn. Sys. Appl. (to appear). Zbl0817.34029MR1304132
- [12] V. Kozlov, Calculus of variations in the large and classical mechanics, Russ. Math. Surv., 40 (1985), pp. 37-71. Zbl0579.70020MR786086
- [13] J. Nash, The embedding problem for Riemannian manifolds, Ann. Math., 63 (1956), pp. 20-63. Zbl0070.38603MR75639
- [14] B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press. (1983). Zbl0531.53051
- [15] R.S. Palais, Morse theory on Hilbert manifolds, Topology, 2 (1963), pp. 299-340. Zbl0122.10702MR158410
- [16] P.H. Rabinowitz, Periodic and heteroclinic orbits for a periodic Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 6 (1989), pp. 331-346. Zbl0701.58023MR1030854
- [17] P.H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburg, 114 (1990), pp. 33-38. Zbl0705.34054MR1051605
- [18] P.H. Rabinowitz - K. TANAKA, Some results on connecting orbits for a class of Hamiltonian system, Math. Zeit., 206 (1991), pp. 473-499. Zbl0707.58022MR1095767
- [19] E. Séré, Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Zeit., 209 (1992), pp. 27-42. Zbl0725.58017MR1143210
- [20] E. Séré, Looking for the Bernoulli shift, Ann. Inst. H. Poincaré: Analyse Non Linéaire (to appear). Zbl0803.58013MR1249107
- [21] E. Séré, Homoclinic orbits in compact hypersurface in R2N of restricted contact type, preprint. Zbl0840.34046
- [22] K. Tanaka, Homoclinic orbits for a singular second order Hamiltonian system, Ann. Inst. H. Poincaré: Analyse Non Linéaire, 7 (1990), pp. 427-438. Zbl0712.58026MR1138531
- [23] K. Tanaka, Homoclinic orbits in a first order superquadratic Hamiltonian system: Convergence of subharmonic orbits, J. Diff. Eq., 94 (1991), pp. 315-339. Zbl0787.34041MR1137618
- [24] K. Tanaka, A note on the existence of multiple homoclinic orbits for a perturbed radial potential, Nonlinear Diff. Eq. Appl. (to appear). Zbl0819.34032MR1273347
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.