Even canonical surfaces with small K 2 - II

Kazuhiro Konno

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 93, page 199-241
  • ISSN: 0041-8994

How to cite

top

Konno, Kazuhiro. "Even canonical surfaces with small $K^2$ - II." Rendiconti del Seminario Matematico della Università di Padova 93 (1995): 199-241. <http://eudml.org/doc/108357>.

@article{Konno1995,
author = {Konno, Kazuhiro},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {canonical surfaces; canonical map; canonical divisor; birational map; Reid's conjecture; Del Pezzo surface},
language = {eng},
pages = {199-241},
publisher = {Seminario Matematico of the University of Padua},
title = {Even canonical surfaces with small $K^2$ - II},
url = {http://eudml.org/doc/108357},
volume = {93},
year = {1995},
}

TY - JOUR
AU - Konno, Kazuhiro
TI - Even canonical surfaces with small $K^2$ - II
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 93
SP - 199
EP - 241
LA - eng
KW - canonical surfaces; canonical map; canonical divisor; birational map; Reid's conjecture; Del Pezzo surface
UR - http://eudml.org/doc/108357
ER -

References

top
  1. [1] A. Beauville, L'application canonique pour les surfaces de type général, Invent. Math., 55 (1979), pp. 121-140. Zbl0403.14006MR553705
  2. [2] Del Pezzo, Sulle superficie di ordine n immerse nello spazio di n + 1 dimensioni, Rend Acad. Napoli, (1885). JFM17.0514.01
  3. [3] T. Fujita, On the structure of polarized varieties with Δ-genus zero, J. Fac. Sci. Univ. Tokyo, 22 (1975), pp. 103-115. Zbl0333.14004
  4. [4] T. Fujita, On the structure of polarized manifolds with total deficiency one, I, II and III, J. Math. Soc. Japan, 32 (1980), pp. 709-725; 33 (1981), pp. 415-434; 36 (1984), pp. 75-89. Zbl0474.14018MR589109
  5. [5] T. Fujita, On polarized varieties of small Δ-genera, Tôhoku Math. J., 34 (1982), pp. 319-341. Zbl0489.14002
  6. [6] T. Fujita, Projective varieties of Δ-genus one, in Algebraic and Topological Theories - to the memory of Dr. Takehiko Miyata, pp. 149-175, Kinokuniya Book Store (1985). Zbl0800.14020
  7. [7] J. Harris, Curves in Projective Space, Lecture Notes, LePresses de l'Université de Montreal (1982). Zbl0511.14014MR685427
  8. [8] E. Horikawa, Algebraic surfaces of general type with small c21, I, Ann. Math., 104 (1976), pp. 358-387. Zbl0339.14024MR424831
  9. [9] E. Horikawa, Notes on canonical surfaces, Tôhoku Math. J., 43 (1991), pp. 141-148. Zbl0748.14014MR1088721
  10. [10] K. Konno, Algebraic surfaces of general type with c2 1 = 3pg - 6, Math. Ann., 290 (1991), pp. 77-107. Zbl0711.14021MR1107664
  11. [11] K. Konno, Even surfaces with pg = 7, q = 0 and K2 = 16, Math. Rep. Kyushu Univ., 18 (1991), pp. 15-41. Zbl0763.14016MR1157326
  12. [12] K. Konno, Even canonical surfaces with small K2, I, Nagoya Math. J., 129 (1993), pp. 115-146. Zbl0780.14020MR1210005
  13. [13] M. Nagata, On rational surfaces, I, Mem. Coll. Sci. Univ. Kyoto Ser.A, 32 (1960), pp. 351-370. Zbl0100.16703MR126443
  14. [14] M. Reid, π1 for surface with small K2, Lec. Notes in Math., 732, pp. 534-544Springer (1979). Zbl0423.14021
  15. [15] G. Xiao, Fibered algebraic surfaces with low slope, Math. Ann., 276 (1987), pp. 449-466. Zbl0596.14028MR875340

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.