Minimal abelian automorphism groups of finite groups

Peter V. Hegarty

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 94, page 121-135
  • ISSN: 0041-8994

How to cite

top

Hegarty, Peter V.. "Minimal abelian automorphism groups of finite groups." Rendiconti del Seminario Matematico della Università di Padova 94 (1995): 121-135. <http://eudml.org/doc/108365>.

@article{Hegarty1995,
author = {Hegarty, Peter V.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {finite non-cyclic -groups; minimal order; Abelian automorphism groups; finite 2-groups},
language = {eng},
pages = {121-135},
publisher = {Seminario Matematico of the University of Padua},
title = {Minimal abelian automorphism groups of finite groups},
url = {http://eudml.org/doc/108365},
volume = {94},
year = {1995},
}

TY - JOUR
AU - Hegarty, Peter V.
TI - Minimal abelian automorphism groups of finite groups
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 94
SP - 121
EP - 135
LA - eng
KW - finite non-cyclic -groups; minimal order; Abelian automorphism groups; finite 2-groups
UR - http://eudml.org/doc/108365
ER -

References

top
  1. [1] J.E. Adney - T. Yen, Automorphisms of a p-group, Illinois J. Math., 9 (1965), pp. 137-143. Zbl0125.28803MR171845
  2. [2] J. Dixon, Problems in Group Theory, Blaisdell, New York (1976). Zbl0153.34901
  3. [3] B.E. Earnley, On finite groups whose group of automorphisms is Abelian, Ph. D. thesis, Wayne State University, 1975, Dissertation Abstracts, V. 36, p. 2269 B. 
  4. [4] R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc., 19 (1968), pp. 1379-1382. Zbl0169.03301MR248224
  5. [5] J. Flynn - D. MACHALE - E. A. O'BRIEN - R. SHEEHY, Finite groups whose automorphism groups are 2-groups, Proc. R. Ir. Acad., 94A, No. 2 (1994), pp. 137-145. Zbl0847.20015MR1369026
  6. [6] O.J. Huval, A note on the outer automorphisms of finite nilpotent groups, Amer. Math. Monthly (1966), pp. 174-175. Zbl0135.05303MR1533639
  7. [7] D. Machale - R. Sheehy, Finite groups with odd order automorphism groups, Proc. R. Ir. Acad., to appear. Zbl0847.20028MR1660371
  8. [8] G.A. Miller, A non-Abelian group whose group of automorphisms is Abelian, Messenger Math., 43 (1913), pp. 124-125. JFM44.0166.02
  9. [9] M. Morigi, On p-groups with Abelian automorphism group, Rend. Sem. Mat. Univ. Padova, 92 (1994). Zbl0829.20028MR1320477
  10. [10] P.R. Sanders, The central automorphisms of a finite group, J. London Math. Soc., 44 (1969), pp. 225-228. Zbl0169.34004MR248208

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.