A semi-linear problem for the Heisenberg laplacian

Isabeau Birindelli; Alessandra Cutrì

Rendiconti del Seminario Matematico della Università di Padova (1995)

  • Volume: 94, page 137-153
  • ISSN: 0041-8994

How to cite

top

Birindelli, Isabeau, and Cutrì, Alessandra. "A semi-linear problem for the Heisenberg laplacian." Rendiconti del Seminario Matematico della Università di Padova 94 (1995): 137-153. <http://eudml.org/doc/108366>.

@article{Birindelli1995,
author = {Birindelli, Isabeau, Cutrì, Alessandra},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Dirichlet problem; sub-elliptic operator; existence of positive solutions; principal eigenvalue; Hopf type lemma; embedding theorem},
language = {eng},
pages = {137-153},
publisher = {Seminario Matematico of the University of Padua},
title = {A semi-linear problem for the Heisenberg laplacian},
url = {http://eudml.org/doc/108366},
volume = {94},
year = {1995},
}

TY - JOUR
AU - Birindelli, Isabeau
AU - Cutrì, Alessandra
TI - A semi-linear problem for the Heisenberg laplacian
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1995
PB - Seminario Matematico of the University of Padua
VL - 94
SP - 137
EP - 153
LA - eng
KW - Dirichlet problem; sub-elliptic operator; existence of positive solutions; principal eigenvalue; Hopf type lemma; embedding theorem
UR - http://eudml.org/doc/108366
ER -

References

top
  1. [1] H. Amann - M.G. Crandall, On some existence theorems for semilinear elliptic equations, Indiana Univ. Math. Journ., 27, 5 (1978), pp. 779-790. Zbl0391.35030MR503713
  2. [2] J.M. Bony, Principe du Maximum, Inégalité de Harnack et unicité du problème de Cauchy pour les operateurs elliptiques dégénérés, Ann. Inst. Fourier Grenobles, 19, 1 (1969), pp. 277-304. Zbl0176.09703MR262881
  3. [3] H. Berestycki - I. Capuzzo Dolcetta - L. Nirenberg, Problèmes Elliptiques indéfinis et Théorème de Liouville non-linéaires, C. R. Acad. Sci. Paris, Série I, 317 (1993), pp. 945-950. Zbl0820.35056MR1249366
  4. [4] G.B. Folland, Subelliptic estimates and function spaces on nilpotent Lie group, Ark. Mat., 13 (1975), pp. 161-220. Zbl0312.35026MR494315
  5. [5] G.B. Folland, Fondamental solution for subelliptic operators, Bull. Amer. Math. Soc., 79, (1979), pp. 373-376. Zbl0256.35020MR315267
  6. [6] G.B. Folland - E.M. Stein, Estimates for the ∂h complex and analysis on the Heisenberg Group, Comm. Pure Apll. Math., 27 (1974), pp. 492-522. Zbl0293.35012
  7. [7] N. Garofalo - E. LANCONELLI, Existence and non existence results for semilinear Equations on the Heisenberg Group, Indiana Univ. Math. Journ., 41 (1992), pp. 71-97. Zbl0793.35037MR1160903
  8. [8] B. Gidas - W. M. NI - L. NIRENBERG, Symmetry and related Properties via the Maximum Principle, Commun. Math. Phys., 68 (1979), pp. 209-243. Zbl0425.35020MR544879
  9. [9] L. Hormander, Hypoelliptic second order differential equations, Acta Math., Uppsala, 119 (1967), pp. 147-171. Zbl0156.10701MR222474
  10. [10] D.S. Jerison, The Dirichlet Problem for the Kohn Laplacian on the Heisenberg group, II, J. Funct. Anal., 43 (1981), pp. 224-257. Zbl0493.58022MR633978
  11. [11] D. Jerison - A. Sànchez-Calle, Subelliptic second order differential operator, Lecture Notes in Math., 1277, Berlin-Heidelberg-New York (1987), pp. 46-77. Zbl0634.35017MR922334
  12. [12] J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech., 43 (1971), pp. 304-318. Zbl0222.31007MR333220

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.