Class invariants and cyclotomic unit groups from special values of modular units

Amanda Folsom[1]

  • [1] Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, USA

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 2, page 289-325
  • ISSN: 1246-7405

Abstract

top
In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order q -recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, regarding the Gauss periods. These results comprise part of the author’s 2006 Ph.D. thesis [6] in which the structure of these modular unit groups and their associated cuspidal divisor class groups are also characterized, and a cuspidal divisor class number formula is given in terms of products of L -functions and compared to the classical relative class number formula within the cyclotomic fields [6, 7].

How to cite

top

Folsom, Amanda. "Class invariants and cyclotomic unit groups from special values of modular units." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 289-325. <http://eudml.org/doc/10837>.

@article{Folsom2008,
abstract = {In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order $q$-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, regarding the Gauss periods. These results comprise part of the author’s 2006 Ph.D. thesis [6] in which the structure of these modular unit groups and their associated cuspidal divisor class groups are also characterized, and a cuspidal divisor class number formula is given in terms of products of $L$-functions and compared to the classical relative class number formula within the cyclotomic fields [6, 7].},
affiliation = {Department of Mathematics University of California, Los Angeles Box 951555 Los Angeles, CA 90095-1555, USA},
author = {Folsom, Amanda},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {modular unit; class invariant; cyclotomic unit},
language = {eng},
number = {2},
pages = {289-325},
publisher = {Université Bordeaux 1},
title = {Class invariants and cyclotomic unit groups from special values of modular units},
url = {http://eudml.org/doc/10837},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Folsom, Amanda
TI - Class invariants and cyclotomic unit groups from special values of modular units
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 289
EP - 325
AB - In this article we obtain class invariants and cyclotomic unit groups by considering specializations of modular units. We construct these modular units from functional solutions to higher order $q$-recurrence equations given by Selberg in his work generalizing the Rogers-Ramanujan identities. As a corollary, we provide a new proof of a result of Zagier and Gupta, originally considered by Gauss, regarding the Gauss periods. These results comprise part of the author’s 2006 Ph.D. thesis [6] in which the structure of these modular unit groups and their associated cuspidal divisor class groups are also characterized, and a cuspidal divisor class number formula is given in terms of products of $L$-functions and compared to the classical relative class number formula within the cyclotomic fields [6, 7].
LA - eng
KW - modular unit; class invariant; cyclotomic unit
UR - http://eudml.org/doc/10837
ER -

References

top
  1. G. Andrews, An analytic proof of the Rogers-Ramanujan-Gordon identities. Amer. J. Math. 88 (1966), 844–846. Zbl0147.26502MR202616
  2. G. Andrews, An introduction to Ramanujan’s ‘lost’ notebook. Amer. Math. Monthly 86 (1979), no. 2, 89–108. Zbl0401.01003
  3. S. Bettner, R. Schertz, Lower powers of elliptic units. J. Théor. Nombres Bordeaux 13 (2001) no. 2, 339–351. Zbl1003.11026MR1879662
  4. W. Duke, Continued Fractions and Modular Functions. Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 2, 137–162. Zbl1109.11026MR2133308
  5. H. M. Farkas, I. Kra, Theta constants, Riemann surfaces and the modular group. Graduate Studies in Mathematics 37. American Mathematical Society, Providence, RI, (2001). Zbl0982.30001MR1850752
  6. A. Folsom, Modular Units. UCLA Ph.D. Thesis, 2006. Zbl1114.11041
  7. A. Folsom, Modular units, divisor class groups, and the q-difference equations of Selberg. Preprint, submitted. Zbl1241.11065
  8. S. Gupta, D. Zagier, On the coefficients of the minimal polynomials of Gaussian periods. Math. Comp. 60 (1993), no. 201, 385–398. Zbl0819.11062MR1155574
  9. N. Ishida, N. Ishii, The equations for modular function fields of principal congruence subgroups of prime level. Manuscripta Math. 90 (1996), no. 3, 271–285. Zbl0871.11031MR1397657
  10. N. Ishida, Generators and equations for modular function fields of principal congruence subgroups. Acta Arith. 85 (1998), no. 3, 197–207. Zbl0915.11025MR1627819
  11. N. Ishii, Construction of generators of modular function fields. Math. Japon. 28 (1983), no. 6, 655–681. Zbl0536.10016MR732398
  12. D. S. Kubert, S. Lang, Units in the modular function field. I. Math. Ann. 218 (1975), no. 1, 67–96. Zbl0311.14005MR437496
  13. D. S. Kubert, S. Lang, Units in the modular function field. II. A full set of units. Math. Ann. 218 (1975), no. 2, 175–189. Zbl0311.14005MR437497
  14. D. S. Kubert,S. Lang, Units in the modular function field. III. Distribution relations. Math. Ann. 218 (1975), no. 3, 273–285. Zbl0311.14005MR437498
  15. D. S. Kubert, S. Lang, Units in the modular function field. Modular functions of one variable V. (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Math., Vol. 601, Springer, Berlin, (1977), 247–275. Zbl0361.10022MR453646
  16. D. S. Kubert, S. Lang, Distributions on toroidal groups. Math. Z. 148 (1976), no. 1, 33–51. Zbl0324.10021MR401652
  17. D. S. Kubert, S. Lang, Units in the modular function field. IV. The Siegel functions are generators. Math. Ann. 227 (1977), no. 3, 223–242. Zbl0331.10012MR498393
  18. D. S. Kubert, S. Lang, The p -primary component of the cuspidal divisor class group on the modular curve X ( p ) . Math. Ann. 234 (1978), no. 1, 25–44. Zbl0354.12016MR488819
  19. D. S Kubert, S. Lang, Modular Units. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science] 244. Springer-Verlag, New York-Berlin, (1981). Zbl0492.12002MR648603
  20. S. Lang, Elliptic Functions. Addison-Wesley Publishing Co., Reading, MA, (1973). Zbl0316.14001MR409362
  21. K. Ramachandra, Some applications of Kronecker’s limit formulas. Ann. of Math. (2) 80 (1964), 104–148. Zbl0142.29804
  22. L.J. Rogers, Second Memoir on the Expansion of Certain Infinite Products. Proc. London Math. Soc. 25 (1894), 318–343. 
  23. L.J. Rogers, S. Ramanujan, Proof of certain identities in combinatory analysis. Cambr. Phil. Soc. Proc. 19 (1919), 211–216. Zbl47.0903.01
  24. R. Schertz, Construction of Ray Class Fields by Elliptic Units. J. Théor. Nombres Bordeaux 9 (1997), no. 2, 383–394. Zbl0902.11047MR1617405
  25. I. Schur, Ein Beitrag zur additiven Zahlentheorie und zur Theorie der Kettenbrüche. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Klasse (1917), 302–321. Zbl46.1448.02
  26. A. Selberg, Über einge aritheoremetische Identitäten. Avh. Norske Vidensk. Akad. Oslo, I 1936, Nr. 8, 23 S.(1936); reprinted in Collected Papers, Vol. I, Springer-Verlag, Berlin, (1989). Zbl0016.24701
  27. G. Shimura, Introduction to the Aritheoremetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan 11. Iwanami Shoten, Publishers, and Princeton University Press, (1971). Zbl0221.10029MR1291394
  28. J.J. Sylvester, On certain ternary cubic equations. Amer. J. Math. 2 (1879), 357–381; reprinted in Collected Papers, Vol. 3, Cambridge, (1909), 325–339. 
  29. L.C. Washington, Introduction to Cyclotomic Fields, 2nd Ed. Graduate Texts in Mathematics vol. 83, Springer Verlag, (1997). Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.