Commutative domains large in their 𝔐 -adic completions

P. Zanardo; U. Zannier

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 1-9
  • ISSN: 0041-8994

How to cite

top

Zanardo, P., and Zannier, U.. "Commutative domains large in their $\mathfrak {M}$-adic completions." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 1-9. <http://eudml.org/doc/108391>.

@article{Zanardo1996,
author = {Zanardo, P., Zannier, U.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {adic topology; algebraicity of element; integral domain; completion},
language = {eng},
pages = {1-9},
publisher = {Seminario Matematico of the University of Padua},
title = {Commutative domains large in their $\mathfrak \{M\}$-adic completions},
url = {http://eudml.org/doc/108391},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Zanardo, P.
AU - Zannier, U.
TI - Commutative domains large in their $\mathfrak {M}$-adic completions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 1
EP - 9
LA - eng
KW - adic topology; algebraicity of element; integral domain; completion
UR - http://eudml.org/doc/108391
ER -

References

top
  1. [1] D. Arnold - M. Dugas, Indecomposable modules over Nagata valuation domains, to appear. Zbl0824.13007MR1239795
  2. [2] M. Atiyah - I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601MR242802
  3. [3] N. Bourbaki, Algèbre Commutative, Masson, Paris (1985). 
  4. [4] A.L.S. Corner, Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
  5. [5] I. Kaplansky, Fields and Rings, University of Chicago Press, Chicago (1972). Zbl1001.16500MR349646
  6. [6] M. Nagata, Local Rings, Wiley, Interscience (1962). Zbl0123.03402MR155856
  7. [7] F. Okoh, The rank of a completion of a Dedekind domain, Comm. in Algebra, 21 (12) (1993), pp. 4561-574. Zbl0792.13007MR1242848
  8. [8] A. Orsatti, A class of rings which are the endomorphism rings of some torsion-free abelian groups, Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 143-53. Zbl0188.08903MR242948
  9. [9] G. Piva, On endomorphism algebras over admissible Dedekind domains, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 163-72. Zbl0655.20042MR964028
  10. [10] P. Ribenboim, On the completion of a valuation ring, Math. Ann., 155 (1964), pp. 392-396. Zbl0136.32102MR164960
  11. [11] P. Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra, 82 (1992), pp. 195-209. Zbl0781.13004MR1182938

NotesEmbed ?

top

You must be logged in to post comments.