Commutative domains large in their 𝔐 -adic completions

P. Zanardo; U. Zannier

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 1-9
  • ISSN: 0041-8994

How to cite

top

Zanardo, P., and Zannier, U.. "Commutative domains large in their $\mathfrak {M}$-adic completions." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 1-9. <http://eudml.org/doc/108391>.

@article{Zanardo1996,
author = {Zanardo, P., Zannier, U.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {adic topology; algebraicity of element; integral domain; completion},
language = {eng},
pages = {1-9},
publisher = {Seminario Matematico of the University of Padua},
title = {Commutative domains large in their $\mathfrak \{M\}$-adic completions},
url = {http://eudml.org/doc/108391},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Zanardo, P.
AU - Zannier, U.
TI - Commutative domains large in their $\mathfrak {M}$-adic completions
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 1
EP - 9
LA - eng
KW - adic topology; algebraicity of element; integral domain; completion
UR - http://eudml.org/doc/108391
ER -

References

top
  1. [1] D. Arnold - M. Dugas, Indecomposable modules over Nagata valuation domains, to appear. Zbl0824.13007MR1239795
  2. [2] M. Atiyah - I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601MR242802
  3. [3] N. Bourbaki, Algèbre Commutative, Masson, Paris (1985). 
  4. [4] A.L.S. Corner, Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
  5. [5] I. Kaplansky, Fields and Rings, University of Chicago Press, Chicago (1972). Zbl1001.16500MR349646
  6. [6] M. Nagata, Local Rings, Wiley, Interscience (1962). Zbl0123.03402MR155856
  7. [7] F. Okoh, The rank of a completion of a Dedekind domain, Comm. in Algebra, 21 (12) (1993), pp. 4561-574. Zbl0792.13007MR1242848
  8. [8] A. Orsatti, A class of rings which are the endomorphism rings of some torsion-free abelian groups, Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 143-53. Zbl0188.08903MR242948
  9. [9] G. Piva, On endomorphism algebras over admissible Dedekind domains, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 163-72. Zbl0655.20042MR964028
  10. [10] P. Ribenboim, On the completion of a valuation ring, Math. Ann., 155 (1964), pp. 392-396. Zbl0136.32102MR164960
  11. [11] P. Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra, 82 (1992), pp. 195-209. Zbl0781.13004MR1182938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.