Commutative domains large in their -adic completions
Rendiconti del Seminario Matematico della Università di Padova (1996)
- Volume: 95, page 1-9
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] D. Arnold - M. Dugas, Indecomposable modules over Nagata valuation domains, to appear. Zbl0824.13007MR1239795
- [2] M. Atiyah - I. MACDONALD, Introduction to Commutative Algebra, Addison-Wesley (1969). Zbl0175.03601MR242802
- [3] N. Bourbaki, Algèbre Commutative, Masson, Paris (1985).
- [4] A.L.S. Corner, Every countable reduced torsion free ring is an endomorphism ring, Proc. London Math. Soc. (3), 13 (1963), pp. 687-710. Zbl0116.02403MR153743
- [5] I. Kaplansky, Fields and Rings, University of Chicago Press, Chicago (1972). Zbl1001.16500MR349646
- [6] M. Nagata, Local Rings, Wiley, Interscience (1962). Zbl0123.03402MR155856
- [7] F. Okoh, The rank of a completion of a Dedekind domain, Comm. in Algebra, 21 (12) (1993), pp. 4561-574. Zbl0792.13007MR1242848
- [8] A. Orsatti, A class of rings which are the endomorphism rings of some torsion-free abelian groups, Ann. Scuola Norm. Sup. Pisa, 23 (1969), pp. 143-53. Zbl0188.08903MR242948
- [9] G. Piva, On endomorphism algebras over admissible Dedekind domains, Rend. Sem. Mat. Univ. Padova, 79 (1988), pp. 163-72. Zbl0655.20042MR964028
- [10] P. Ribenboim, On the completion of a valuation ring, Math. Ann., 155 (1964), pp. 392-396. Zbl0136.32102MR164960
- [11] P. Zanardo, Kurosch invariants for torsion-free modules over Nagata valuation domains, J. Pure Appl. Algebra, 82 (1992), pp. 195-209. Zbl0781.13004MR1182938