Groups preserving the cardinality of subsets product under permutations
Rendiconti del Seminario Matematico della Università di Padova (1996)
- Volume: 95, page 29-36
- ISSN: 0041-8994
Access Full Article
topHow to cite
topYang Kok Kim. "Groups preserving the cardinality of subsets product under permutations." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 29-36. <http://eudml.org/doc/108396>.
@article{YangKokKim1996,
author = {Yang Kok Kim},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {centre-by-finite exponent groups; 2-element subsets; Hamiltonian 2-groups},
language = {eng},
pages = {29-36},
publisher = {Seminario Matematico of the University of Padua},
title = {Groups preserving the cardinality of subsets product under permutations},
url = {http://eudml.org/doc/108396},
volume = {95},
year = {1996},
}
TY - JOUR
AU - Yang Kok Kim
TI - Groups preserving the cardinality of subsets product under permutations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 29
EP - 36
LA - eng
KW - centre-by-finite exponent groups; 2-element subsets; Hamiltonian 2-groups
UR - http://eudml.org/doc/108396
ER -
References
top- [1] R.D. Blyth, Rewriting products of group elements I, J. Algebra, 116 (1988), pp. 506-521. Zbl0647.20033MR953167
- [2] R.D. Blyth - A.H. Rhemtulla, Rewritable products in FC-by-finite groups, Canad. J. Math., 41, No. 2 (1989), pp. 369-384. Zbl0665.20020MR1001616
- [3] M. Curzio - P. Longobardi - M. Maj - D.J.S. Robinson, A permutational property of groups, Arch. Math. (Basel), 44 (1985), pp. 385-389. Zbl0544.20036MR792360
- [4] Y.K. Kim - A.H. Rhemtulla, Weak maximality condition and polycyclic groups, in Proceedings of the American Mathematical Society, Vol. 123, No. 3, March 1995, pp. 711-714. Zbl0829.20051MR1285998
- [5] A.H. Rhemtulla - A.R. Weiss, Groups with permutable subgroup products, in Group Theory: Proceedings of the 1987 Singapore Conference, edited by K. N. Cheng and Y.K. Leong, de Gruyter (1989), pp. 485-495. Zbl0669.20021MR981864
- [6] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York (1980). Zbl0836.20001
- [7] D.J.S. Robinson, Finiteness Conditions and Generalized Soluble Groups, Part I, Springer-Verlag, New York (1972). Zbl0243.20032
- [8] J.F. Semple - A. Shalev, Combinatorial conditions in residually finite groups I, J. Algebra, 157 (1993), pp. 43-50. Zbl0814.20022MR1219657
- [9] M.J. Tomkinson, FC-groups, Research Notes in Mathematics, 96, Pitman Advanced Publishing Program, Boston (1984). Zbl0547.20031MR742777
- [10] J.S. Wilson, Two-generator conditions for residually finite groups, Bull. London Math. Soc., 23 (1991), pp. 239-248. Zbl0746.20018MR1123332
- [11] E.I. Zelmanov, On some problems of group theory and Lie algebras, Math. USSR Sbornik, 66 (1990), No. 1, pp. 159-168. Zbl0693.17006MR993451
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.