Differential modules defined by systems of equations

Alan Adolphson; Steven Sperber

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 95, page 37-57
  • ISSN: 0041-8994

How to cite

top

Adolphson, Alan, and Sperber, Steven. "Differential modules defined by systems of equations." Rendiconti del Seminario Matematico della Università di Padova 95 (1996): 37-57. <http://eudml.org/doc/108397>.

@article{Adolphson1996,
author = {Adolphson, Alan, Sperber, Steven},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {hypergeometric differential equations; -module of hypergeometric type; Dwork cohomology spaces},
language = {eng},
pages = {37-57},
publisher = {Seminario Matematico of the University of Padua},
title = {Differential modules defined by systems of equations},
url = {http://eudml.org/doc/108397},
volume = {95},
year = {1996},
}

TY - JOUR
AU - Adolphson, Alan
AU - Sperber, Steven
TI - Differential modules defined by systems of equations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 95
SP - 37
EP - 57
LA - eng
KW - hypergeometric differential equations; -module of hypergeometric type; Dwork cohomology spaces
UR - http://eudml.org/doc/108397
ER -

References

top
  1. [1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J., 73 (1994), pp. 269-290. Zbl0804.33013MR1262208
  2. [2] A. Adolphson - S. Sperber, Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. Math., 130 (1989), 367-406. Zbl0723.14017MR1014928
  3. [3] D.N. Bernstein, The number of roots of a system of equations, Func. Anal. Appl., 9 (1975), pp. 183-185 (English translation). Zbl0328.32001MR435072
  4. [4] B. Dwork - F. LOESER, Hypergeometric series, Japan. J. Math., 19 (1993), pp. 81-129. Zbl0796.12005MR1231511
  5. [5] N. Katz, Thesis, Princeton University (1966). 
  6. [6] N. Katz, On the differential equations satisfied by period matrices, Publ. Math. I.H.E.S., 35 (1968), pp. 223-258. Zbl0159.22502MR242841
  7. [7] A.G. Khovanskii, Newton polyhedra and toroidal varieties, Func. Anal. Appl., 11 (1977), pp. 289-296 (English translation). Zbl0445.14019MR476733
  8. [8] A.G. Khovanskii, Newton polyhedra and the genus of complete intersections, Func. Anal. Appl., 12 (1978), pp. 38-46 (English translation). Zbl0406.14035MR487230
  9. [9] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. Zbl0328.32007MR419433
  10. [10] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge (1986). Zbl0603.13001MR879273
  11. [11] E. Spanier, Algebraic Topology, McGraw-Hill, New York (1966). Zbl0145.43303MR210112

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.