Differential modules defined by systems of equations
Alan Adolphson; Steven Sperber
Rendiconti del Seminario Matematico della Università di Padova (1996)
- Volume: 95, page 37-57
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] A. Adolphson, Hypergeometric functions and rings generated by monomials, Duke Math. J., 73 (1994), pp. 269-290. Zbl0804.33013MR1262208
- [2] A. Adolphson - S. Sperber, Exponential sums and Newton polyhedra: Cohomology and estimates, Ann. Math., 130 (1989), 367-406. Zbl0723.14017MR1014928
- [3] D.N. Bernstein, The number of roots of a system of equations, Func. Anal. Appl., 9 (1975), pp. 183-185 (English translation). Zbl0328.32001MR435072
- [4] B. Dwork - F. LOESER, Hypergeometric series, Japan. J. Math., 19 (1993), pp. 81-129. Zbl0796.12005MR1231511
- [5] N. Katz, Thesis, Princeton University (1966).
- [6] N. Katz, On the differential equations satisfied by period matrices, Publ. Math. I.H.E.S., 35 (1968), pp. 223-258. Zbl0159.22502MR242841
- [7] A.G. Khovanskii, Newton polyhedra and toroidal varieties, Func. Anal. Appl., 11 (1977), pp. 289-296 (English translation). Zbl0445.14019MR476733
- [8] A.G. Khovanskii, Newton polyhedra and the genus of complete intersections, Func. Anal. Appl., 12 (1978), pp. 38-46 (English translation). Zbl0406.14035MR487230
- [9] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. Zbl0328.32007MR419433
- [10] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge (1986). Zbl0603.13001MR879273
- [11] E. Spanier, Algebraic Topology, McGraw-Hill, New York (1966). Zbl0145.43303MR210112