Variants of the Brocard-Ramanujan equation

Omar Kihel[1]; Florian Luca[2]

  • [1] Department of Mathematics Brock University 500 Glenridge Avenue St. Catharines, Ontario Canada L2S 3A1 00000
  • [2] Mathematical Institute UNAM, Campus Morelia Apartado, Postal 27-3 (Xangari), C.P. 58089 Morelia, Michoacán, Mexico

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 2, page 353-363
  • ISSN: 1246-7405

Abstract

top
In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.

How to cite

top

Kihel, Omar, and Luca, Florian. "Variants of the Brocard-Ramanujan equation." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 353-363. <http://eudml.org/doc/10840>.

@article{Kihel2008,
abstract = {In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.},
affiliation = {Department of Mathematics Brock University 500 Glenridge Avenue St. Catharines, Ontario Canada L2S 3A1 00000; Mathematical Institute UNAM, Campus Morelia Apartado, Postal 27-3 (Xangari), C.P. 58089 Morelia, Michoacán, Mexico},
author = {Kihel, Omar, Luca, Florian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Brocard-Ramanujan problem; Diophantine equation involving factorials; ABC conjecture},
language = {eng},
number = {2},
pages = {353-363},
publisher = {Université Bordeaux 1},
title = {Variants of the Brocard-Ramanujan equation},
url = {http://eudml.org/doc/10840},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Kihel, Omar
AU - Luca, Florian
TI - Variants of the Brocard-Ramanujan equation
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 353
EP - 363
AB - In this paper, we discuss variations on the Brocard-Ramanujan Diophantine equation.
LA - eng
KW - Brocard-Ramanujan problem; Diophantine equation involving factorials; ABC conjecture
UR - http://eudml.org/doc/10840
ER -

References

top
  1. D. Berend, C. Osgood, On the equation P ( x ) = n ! and a question of Erdős. J. Number Theory 42 (1992), no. 2, 189–193. Zbl0762.11010MR1183375
  2. D. Berend, J.E. Harmse, On polynomial-factorial diophantine equations. Trans. Amer. Math. Soc. 358 (2005), no 4, 1741–1779. Zbl1114.11029MR2186995
  3. B.C. Berndt, W.F. Galway, On the Brocard-Ramanujan Diophantine equation n ! + 1 = m 2 . The Ramanujan Journal 4 (2000), 41–42. Zbl0999.11078MR1754629
  4. H. Brocard, Question 166. Nouv. Corresp. Math. 2 (1876), 287. 
  5. H. Brocard, Question 1532. Nouv. Ann. Math. 4 (1885), 291. 
  6. A. Dabrowski, On the diophantine equation n ! + A = y 2 . Nieuw Arch. Wisk. 14 (1996), 321–324. Zbl0876.11015MR1430045
  7. P. Erdős, R. Obláth, Über diophantische Gleichungen der Form n ! = x p ± y p und n ! ± m ! = x p . Acta Szeged 8 (1937), 241–255. Zbl63.0113.02
  8. A. Gérardin, Contribution à l’étude de l’équation 1 · 2 · 3 · 4 z + 1 = y 2 . Nouv. Ann. Math. 6 (4) (1906), 222–226. 
  9. H. Gupta, On a Brocard-Ramanujan problem. Math. Student 3 (1935), 71. Zbl61.1074.28
  10. E. Landau, Handbuch der Lehre von der verteilung der Primzahlen, 3rd Edition. Chelsea Publ. Co., 1974. Zbl40.0232.08
  11. F. Luca, The Diophantine equation P ( x ) = n ! and a result of M. Overholt. Glas. Mat. Ser. III 37 (57) no. 2 (2002), 269–273. Zbl1085.11023MR1951531
  12. H.L. Montogomery, R.C. Vaughan, The large sieve. Mathematika 20 (1973), 119–134. Zbl0296.10023MR374060
  13. M. Overholt, The diophantine equation n ! + 1 = m 2 . Bull. London Math. Soc. 25 (1993), 104. Zbl0805.11030MR1204060
  14. R. M. Pollack, H. N. Shapiro, The next to last case of a factorial diophantine equation. Comm. Pure Appl. Math. 26 (1973), 313–325. Zbl0276.10011MR360465
  15. S. Ramanujan, Question 469. J. Indian Math. Soc. 5 (1913), 59. 
  16. S. Ramanujan, Collected papers. New York, 1962. 
  17. S. Wolfram, Math World. http://mathworld.wolfram.com/WilsonTheorem.html 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.