A note on natural tensor products containing complemented copies of c 0

J. A. López Molina; M. J. Rivera

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 105-113
  • ISSN: 0041-8994

How to cite

top

López Molina, J. A., and Rivera, M. J.. "A note on natural tensor products containing complemented copies of $c_0$." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 105-113. <http://eudml.org/doc/108401>.

@article{LópezMolina1996,
author = {López Molina, J. A., Rivera, M. J.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Fréchet lattice; unit basis; tensor product; complemented subspace isomorphic to },
language = {eng},
pages = {105-113},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on natural tensor products containing complemented copies of $c_0$},
url = {http://eudml.org/doc/108401},
volume = {96},
year = {1996},
}

TY - JOUR
AU - López Molina, J. A.
AU - Rivera, M. J.
TI - A note on natural tensor products containing complemented copies of $c_0$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 105
EP - 113
LA - eng
KW - Fréchet lattice; unit basis; tensor product; complemented subspace isomorphic to
UR - http://eudml.org/doc/108401
ER -

References

top
  1. [1] C.D. Aliprantis - O. Burkinshaw, Positive Operators, Academic Press, New York, London (1985). Zbl0608.47039MR809372
  2. [2] A.V. Bukhvalov, Spaces of vector-valued functions and tensor products, Sib. Mat. Zh., 16, 6 (1972), pp. 1229-1238. Zbl0253.46081MR358342
  3. [3] A.V. Bukhvalov - A.I. Veksler - V.A. Geiler, Normed lattices, J. Soviet Math., 18 (1982), pp. 516-551. Zbl0478.46018
  4. [4] P. Cembranos, C(K, E) contains a complemented copy of c 0, Proc. Amer. Math. Soc., 91 (1984), pp. 556-558. Zbl0604.46040MR746089
  5. [5] J. Chaney, Banach lattices of compact maps, Math. Z., 129 (1972), pp. 1-19. Zbl0231.46020MR312329
  6. [6] S. Díaz, Complemented copies of c0 in L∞ (μ, E), Proc. Amer. Math. Soc., 120, 4 (1994), pp. 1167-1172. Zbl0801.46009
  7. [7] G. Emmanuele, On complemented copies of c0 in Lp, 1 ≤ p &lt; ∞, Proc. Amer. Math. Soc., 104 (1988), pp. 785-786. Zbl0692.46016
  8. [9] W. Hensgen, Some properties of the vector-valued Banach ideal space E(X) derived from those of E and X, Collect. Math., 43, 1 (1992), pp. 1-13. Zbl0782.46037MR1214219
  9. [10] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart (1981). Zbl0466.46001MR632257
  10. [11] v. L. Levin, Tensor products and functors in categories of Banach spaces defined by KB-lineals, Trans. Moscow Math. Soc., 20 (1969), pp. 41-77. Zbl0229.46057MR254572
  11. [12] J. Lindenstrauss - L. TZAFRIRI, Classical Banach Spaces. - I: Sequence Spaces, Springer-Verlag, Berlin, Heidelberg, New York (1977). Zbl0362.46013MR500056
  12. [13] H.P. Lotz, Extensions and liftings of positive linear mappings on Banach lattices, Trans. Amer. Mat. Soc., 211 (1975), pp. 85-100. Zbl0351.47005MR383141
  13. [14] E. Saab - P. Saab, On complemented copies of c0 in injective tensor products, Contemp. Math., 52 (1986), pp. 131-135. Zbl0589.46057MR840704
  14. [15] P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Math., 38 (1970), pp. 71-100. Zbl0213.14201MR275121

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.