Haar inequality in hereditary setting and applications

Primo Brandi; Cristina Marcelli

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 177-194
  • ISSN: 0041-8994

How to cite

top

Brandi, Primo, and Marcelli, Cristina. "Haar inequality in hereditary setting and applications." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 177-194. <http://eudml.org/doc/108408>.

@article{Brandi1996,
author = {Brandi, Primo, Marcelli, Cristina},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {functional extension of Haar's lemma; uniqueness; continuous dependence criteria; Cauchy problems},
language = {eng},
pages = {177-194},
publisher = {Seminario Matematico of the University of Padua},
title = {Haar inequality in hereditary setting and applications},
url = {http://eudml.org/doc/108408},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Brandi, Primo
AU - Marcelli, Cristina
TI - Haar inequality in hereditary setting and applications
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 177
EP - 194
LA - eng
KW - functional extension of Haar's lemma; uniqueness; continuous dependence criteria; Cauchy problems
UR - http://eudml.org/doc/108408
ER -

References

top
  1. [1] P. Brandi - R. Ceppitelli, ε-Approximate solutions for hereditary non linear partial differential equations, Rend. Circ. Mat. Palermo, 8 (1985), pp. 399-417. Zbl0627.65121
  2. [2] P. Brandi - R. Ceppitelli, Existence, uniqueness and continuous dependence for a hereditary nonlinear functional partial differential equations, Ann. Polon. Math., 47 (1986), pp. 121-136. Zbl0657.35124MR884930
  3. [3] P. Brandi - R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary differential equations, J. Diff. Eq., 81, 2 (1989), pp. 317-339. Zbl0709.34062MR1016086
  4. [4] P. Brandi - Z. Kamont - A. Salvadori, Differential and differential-difference inequalities related to mixed problems for first order partial differential-functional equations, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), pp. 255-276. Zbl0737.35133MR1111772
  5. [5] P. Brandi - Z. Kamont - A. Salvadori, Approximate solutions of mixed problems for first order partial differential functional equations, Atti Sem. Mat. Fis. Univ. Modena, 39 (1991), pp. 277-302. Zbl0737.35134MR1111773
  6. [6] P. Brandi - C. Marcelli, Extremal solutions and Gronwall inequality in functional setting, Boll. Un. Mat. It., (7) 10-B (1996), pp. 233-254. Zbl0853.34012MR1385061
  7. [7] P. Brandi - C. Marcelli, Uniqueness and continuous dependence for Carathéodory solutions of functional Cauchy problems, Atti Sem. Mat. Fis. Univ. Modena, XLIV (1996), pp. 379-391. Zbl0874.34053MR1405226
  8. [8] M. Cinquini Cibrario - S. CINQUINI, Equazioni alle Derivate Parziali di tipo Iperbolico, Ed. Cremonese, Roma (1964). MR203199
  9. [9] M. Cinquini Cibrario, New results on systems of nonlinear partial differential equations in several indipendent variables, Rend. Sem. Mat. Fis. Milano, 52 (1982), pp. 531-550. Zbl0599.35028MR802962
  10. [10] M. Cinquini Cibrario, A class of systems of nonlinear partial differential equations in several indipendent variables, Ann. Mat. Pura Appl., 140 (4) (1985), pp. 223-253. Zbl0575.35007MR807639
  11. [11] T. Czlapi, A boundary value problem for quasilinear hyperbolic systems of partial differential-functional equations of the first order, Boll. Un. Mat. It., 5-B (7) (1991), pp. 619-637. Zbl0770.35075
  12. [12] Z. Kamont, On the Cauchy problem for systems of first order partial differential-functional equations, Serdica Bulg. Math. Publ., 5 (1979), pp. 327-339. Zbl0446.35029MR570235
  13. [13] Z. Kamont, On the Cauchy problem for non-linear partial differential-functional equations of the first order, Math. Nachr., 88 (1979), pp. 13-29. Zbl0421.35014MR543390
  14. [14] Z. Kamont, A difference method for the non-linear partial differential equations of the first order with a retarded argument, Math. Nachr., 107 (1982), pp. 87-93. Zbl0535.65070MR695738
  15. [15] Z. Kamont, Existence of solutions of first order partial differential-functional equations, Comm. Math., 25 (1985), pp. 249-263. Zbl0609.35017MR844644
  16. [16] Z. Kamont - K. Przadka, On solutions of firts-order partial differential-functional equations in an unbounded domain, Zeit. fur Anal. und ihre Anwen, 6 (1987), pp. 121-132. Zbl0657.35125MR900572
  17. [17] Z. Kamont - J. Turo, On the Cauchy problem for quasilinear hyperbolic systems with a retarded argument, Ann. Mat. Pura Appl., 143 (4) (1986), pp. 235-246. Zbl0637.35080MR859605
  18. [18] V. Lakshmikantham - M.N. Oguztöreli - A.S. Vatsala, Monotone iterative technique for partial differential equations of first order, J. Math. Anal. Appl., 102 (1970), pp. 393-398. Zbl0566.35016MR755970
  19. [19] A. Salvadori, Sul problema di Cauchy per una struttura ereditaria di tipo iperbolico. Esistenza, unicitá e dipendenza continua, Atti Sem. Mat. Fis. Univ. Modena, 32 (1983), pp. 329-356. Zbl0581.35046
  20. [20] J. Szarski, Differential Inequalities, Polish Sci. Publ., Warszawa (1967). Zbl0135.25804
  21. [21] J. Szarski, Generalized Cauchy problem for differential-functional equations with first order partial derivatives, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys., 24 (1976), pp. 576-580. Zbl0352.35030MR437960
  22. [22] J. Szarski, Comparison theorems for infinite systems of differential-functional equations and strongly coupled systems of first order partial differential equations, Rocky Mountain J. Math., 10 (1980), pp. 239-246. Zbl0407.35012MR573873
  23. [23] J. Turo, Generalized solutions of the Cauchy problem for a nonlinear functional partial differential equation, Zeit. fur Anal. und ihre Anw., 7 (2) (1988), pp. 127-133. Zbl0665.35014MR951345
  24. [24] K. Zima, Sur les équations aux dérivées partialles du premier ordre á argument fonctionnel, Ann. Pol. Math., 22 (1969), pp. 49-59. Zbl0187.35202MR245995

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.