History-dependent scalar conservation laws

Pierangelo Marcati; Bruno Rubino

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 195-204
  • ISSN: 0041-8994

How to cite

top

Marcati, Pierangelo, and Rubino, Bruno. "History-dependent scalar conservation laws." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 195-204. <http://eudml.org/doc/108409>.

@article{Marcati1996,
author = {Marcati, Pierangelo, Rubino, Bruno},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {compensated compactness; global existence of weak solutions; linearly degenerate hyperbolic systems},
language = {eng},
pages = {195-204},
publisher = {Seminario Matematico of the University of Padua},
title = {History-dependent scalar conservation laws},
url = {http://eudml.org/doc/108409},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Marcati, Pierangelo
AU - Rubino, Bruno
TI - History-dependent scalar conservation laws
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 195
EP - 204
LA - eng
KW - compensated compactness; global existence of weak solutions; linearly degenerate hyperbolic systems
UR - http://eudml.org/doc/108409
ER -

References

top
  1. [1] J.M. Ball, A version of the fundamental theorem for Young measures, in D. SERRE, editor, Proc. Conf. on Partial Differential Equation and Continuum Models of Phase Transitions, Springer-Verlag (1988). Zbl0991.49500MR1036070
  2. [2] G.-Q. Chen - T.-P. LIU, Zero relaxation and dissipation Limits for hyperbolic conservation laws, Comm. Pure Appl. Math., 46 (1993), pp. 755-781. Zbl0797.35113MR1213992
  3. [3] G.-Q. Chen - Y. Lu, The study on application way of the compensated compactness theory, Clin. Sci. Bull., 34 (1989), pp. 15-19. Zbl0685.35067MR1000841
  4. [4] C.M. Dafermos, Development of singularities in the motion of materials with fading memory, Arch. Rational Mech. Anal., 91 (1986), pp. 193-205. Zbl0595.73026MR806001
  5. [5] C.M. Dafermos, Estimates for conservation laws with little viscosity, SIAM J. Math. Anal., 18 (1987), pp. 409-421. Zbl0655.35055MR876280
  6. [6] C.M. Dafermos, Solutions in L ∞for a conservation law with memory, Analyse Mathématique et Applications, (1988), pp. 117-128. Zbl0686.35075
  7. [7] C.M. Dafermos - J.A. Nohel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Partial Differential Equations, 4 (1979), pp. 219-278. Zbl0464.45009MR522712
  8. [8] C.M. Dafermos - J.A. Nohel, A nonlinear hyperbolic Volterra equation in viscoelasticity, Amer. J. Math., suppl. dedicated to P. Hartman, (1982), pp. 87-116. Zbl0588.35016MR648457
  9. [9] W.J. Hrusa - J.A. Nohel, The Cauchy problem in one-dimensional nonlinear viscoelasticity, J. Differential Equations, 59 (1985), pp. 388-412. Zbl0535.35057MR807854
  10. [10] P. Lin, Young measure and application of compensated compactness to one-dimensional nonlinear elacstodynamics, Trans. Amer. Math. Soc., 329 (1992), pp. 377-413. Zbl0761.35061MR1049615
  11. [11] T.-P. Liu, Nonlinear waves for viscoelasticity with fading memory, J. Differential Equations, 76 (1988), pp. 26-46. Zbl0662.35004MR964611
  12. [12] R.C. Maccamy, A model for one-dimensional nonlinear viscoelasticity, Quart. Appl. Math., 35 (1977), pp. 21-33. Zbl0355.73041MR478939
  13. [13] P. Marcati, Relaxation and singular convergence for quasitinear hyperbolic systems, in L. BOCCARDO, M. A. HERRERO and A. TESEI, editors, First Italian-Spain Meeting on Nonlinear Analisis, pp. 140-148, Rome (1989), Quaderno IAC-CNR. 
  14. [14] P. Marcati - A. Milani, The one-dimensional Darcy's law as the limit of a compressible Euler flow, J. Differential Equations, 13 (1990), pp. 129-147. Zbl0715.35065MR1042662
  15. [15] P. Marcati - A. Milani - P. Secchi, Singular convergence of weak solutions for a quasilinear nonhomogeneous hyperbolic system, Manuscripta Math., 60 (1988), pp. 49-69. Zbl0617.35078MR920759
  16. [16] J.A. Nohel - R.C. Rogers, Development of singularities in nonlinear viscoelasticity, in Amorphous Polymers and Non-Newtonian Fluids, vol. 6, pp. 139-152, Springer Lecture Notes in Mathematics (1987), IMA Vol. Math. Appl. MR902188
  17. [17] M. Renardy - W.J. Hrusa - J.A. Nohel, Mathematical Problems in Viscoelasticity, John Wiley and Longmann Press (1987). Zbl0719.73013MR919738
  18. [18] M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations, Comm. Partial Differential Equations, 7 (1982), pp. 959-1000. Zbl0496.35058MR668586

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.