Global existence results for first-order integrodifferential identification problems

Alfredo Lorenzi; Aleksey Ivanovic Prilepko

Rendiconti del Seminario Matematico della Università di Padova (1996)

  • Volume: 96, page 51-84
  • ISSN: 0041-8994

How to cite

top

Lorenzi, Alfredo, and Prilepko, Aleksey Ivanovic. "Global existence results for first-order integrodifferential identification problems." Rendiconti del Seminario Matematico della Università di Padova 96 (1996): 51-84. <http://eudml.org/doc/108415>.

@article{Lorenzi1996,
author = {Lorenzi, Alfredo, Prilepko, Aleksey Ivanovic},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {global existence; first-order integrodifferential identification problems; positive solution; uniqueness},
language = {eng},
pages = {51-84},
publisher = {Seminario Matematico of the University of Padua},
title = {Global existence results for first-order integrodifferential identification problems},
url = {http://eudml.org/doc/108415},
volume = {96},
year = {1996},
}

TY - JOUR
AU - Lorenzi, Alfredo
AU - Prilepko, Aleksey Ivanovic
TI - Global existence results for first-order integrodifferential identification problems
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1996
PB - Seminario Matematico of the University of Padua
VL - 96
SP - 51
EP - 84
LA - eng
KW - global existence; first-order integrodifferential identification problems; positive solution; uniqueness
UR - http://eudml.org/doc/108415
ER -

References

top
  1. [1] M. Chicco, Third boundary value problem in H2,p (Ω) for a class of linear second order elliptic partial differential equations, Rend. Ist. Mat. Univ. Trieste, 1 (1972), pp. 85-94. Zbl0245.35028
  2. [2] G. Di Blasio, Linear parabolic equations in Lp-spaces, Ann. Mat. Pura Appl., 138 (1984), pp. 55-104. Zbl0568.35047MR779538
  3. [3] D.H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press (1974). Zbl0273.46035MR454575
  4. [4] D. Gilbarg - N. S. TRUDINGER, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, Berlin, Heidelberg, New York (1983). Zbl0361.35003MR737190
  5. [5] P. Grisvard, Équations différentielles abstraites, Ann. Sci. Éc. Norm. Sup., 2 (1969), pp. 311-395. Zbl0193.43502MR270209
  6. [6] V.M. Isakov, On a class of inverse problems for parabolic equations, Dokl. Akad. Nauk. SSSR, 25 (1980), pp. 519-521, (in Russian). Zbl0547.35114MR653221
  7. [7] A.D. Iskenderov, Some inverse problems for determining the right side of differential equations, Izv. Akad. Nauk. Azerb. SSSR, 2 (1976), pp. 35-44 (in Russian). Zbl0345.35084
  8. [8] V.K. Ivanov - V.V. Vasin - V.P. Tanana, Theory of Ill-Posed Problems and its Applications, Nauka, Moscow (1977) (in Russian). Zbl1037.65056
  9. [9] O.A. Ladyzhenskaya - V.A. Solonnikov - N.N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Monograph., vol 23, Amer. Math. Soc., Providence (1968). Zbl0174.15403
  10. [10] M.M. Lavrent'ev - V.G. Romanov - S.P. Shishatskij, Ill-Posed Problems of Mathematical Physics, Transl. Math. Monograph., vol. 64, Amer. Math. Soc., Providence (1986). Zbl0593.35003
  11. [11] A. Lorenzi, Identification problems for integrodifferential equations, in Ill-Posed Problems in Natural Sciences, VSP (1992), pp. 342-374. Zbl0785.45008MR1219995
  12. [12] A. Lorenzi - E. Paparoni, Direct and inverse problems in the theory of materials with memory, Rend. Sem. Mat. Univ. Padova, 87 (1992), pp. 105-138. Zbl0757.73018MR1183905
  13. [13] A. Lorenzi - A.I. Prilepko, Fredholm-type results for integrodifferential identification parabolic problems, Diff. Int. Eqs., 6 (1993), pp. 535-552. Zbl0820.35140MR1202556
  14. [14] A. Lorenzi - E. Sinestrari, An inverse problem in the theory of materials with memory, Nonlinear Anal., 12 (1988), pp. 1317-1335. Zbl0673.45010MR972401
  15. [15] D.G. Orlovskij, The problem of determining a parameter in an evolution equation, Diff. Eqs., 26 (1990), pp. 1614-1621. Zbl0712.34016MR1080438
  16. [16] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag (1983). Zbl0516.47023MR710486
  17. [17] G.N. Polozhiy, Equations of Mathematical Physics, Hayden Book Co., New York (1967). 
  18. [18] A.I. Prilepko, On inverse problems in Potential Theory, Diff. Urav., 3 (1967), pp. 30-44; English translation: Diff. Eqs., 3 (1967), pp. 14-20. Zbl0214.10801MR226047
  19. [19] A.I. Prilepko, Selected questions related to inverse problems of Mathematical Physics, in Conditionally Well-Posed Problems of Mathematical Physics and Analysis (in Russian), Nauka, Novosibirsk (1992), pp. 151-162. Zbl0928.35197MR1454143
  20. [20] A.I. Prilepko - A.B. Kostin, On the identification of a coefficient in a parabolic equation I, Sib. Mat. Zh., 33 (1992), pp. 146-155. Zbl0784.35122MR1178466
  21. [21] A.I. Prilepko - A.B. Kostin, On the identification of a coefficient in a parabolic equation II, Sib. Mat. Zh., 34 (1993), pp. 147-158. Zbl0807.35164MR1255467
  22. [22] A.I. Prilepko - A.B. Kostin, On certain inverse problems for parabolic equations with final and integral observation, Russian Acad. Sci. Sb. Math., 75 (1993), pp. 473-490. Zbl0802.35158MR1183397
  23. [23] A.I. Prilepko - A.B. Kostin - I.V. Tikhonov, Inverse problems for evolution equations, in Ill-Posed Problems in Natural Sciences, VSP (1992), pp. 379-389. Zbl0788.35146MR1219998
  24. [24] A.I. Prilepko - D.G. Orlovskij - I.A. Vasin, Inverse problems in Mathematical Physics, in Ill-Posed Problems in Natural Sciences, VSP (1992), pp. 390-407. Zbl0789.35179MR1219999
  25. [25] A.I. Prilepko - V.V. Solovyev, Solvability theorems and Rothe's method for inverse problems for an equation of parabolic type, Diff. Eqs., 23 (1987), pp. 1971-1980. Zbl0683.35090MR928246
  26. [26] A.I. Prilepko - I.V. Tikhonov, Uniqueness of the solution to an inverse problem related to an evolution equation and applications to the transfer equation, Mat. Zam., 51 (1992), pp. 77-88. Zbl0792.34011MR1165470
  27. [27] A.I. Prilepko - I.V. Tikhonov, Inverse problems with final determination related to abstract evolution equations in ordered Banach spaces, Funct. Anal. Pri., 27 (1993), pp. 81-83. Zbl0786.34026MR1225918
  28. [28] A.I. Prilepko - I.V. Tikhonov, Determination of a homogeneous addend in abstract inverse problems, Izv. R.A.N. Mathematical Series, 58 (1994), pp. 167-188. Zbl0826.47028MR1275907
  29. [29] A.I. Prilepko - I.A. Vasin, Inverse initial boundary value problems for linearized nonstationary Navier-Stokes equations, Diff. Eqs., 25 (1989), pp. 106-117. Zbl0689.35073MR986402
  30. [30] A.I. Prilepko - I.A. Vasin, Inverse initial boundary value problems for nonlinear Navier-Stokes equations, Diff. Eqs., 25 (1989), pp. 2164-2177. Zbl0850.76119MR1044654
  31. [31] A. Rundell, Determination of an unknown nonhomogeneous term in a linear partial differential equation from overspecified boundary data, Appl. Anal., 10 (1980), pp. 231-242. Zbl0454.35045MR577334
  32. [32] V.V. Solovyev, Fredholmness in an inverse problem related to the determination of the free member in a parabolic equation in Analysis of Mathematical Models of Physical Processes, Energoatomizdat Moscow (1988), pp. 90-95. 
  33. [33] H. Tanabe, Equations of Evolution, Pitman, London (1979). Zbl0417.35003MR533824
  34. [34] A.N. Tikhonov - V. Ya.ARSENIN, Méthodes de résolution des problèmes mal posés, Mir, Moscow (1973). 
  35. [35] K. Yosida, Functional Analysis, Springer-Verlag, Berlin (1968). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.