On a method of Balasubramanian and Ramachandra (on the abelian group problem)

A. Sankaranarayanan; K. Srinivas

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 97, page 135-161
  • ISSN: 0041-8994

How to cite

top

Sankaranarayanan, A., and Srinivas, K.. "On a method of Balasubramanian and Ramachandra (on the abelian group problem)." Rendiconti del Seminario Matematico della Università di Padova 97 (1997): 135-161. <http://eudml.org/doc/108419>.

@article{Sankaranarayanan1997,
author = {Sankaranarayanan, A., Srinivas, K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {number of finite non-isomorphic abelian groups; Dirichlet series; Euler product; error term; summatory function; Omega estimation},
language = {eng},
pages = {135-161},
publisher = {Seminario Matematico of the University of Padua},
title = {On a method of Balasubramanian and Ramachandra (on the abelian group problem)},
url = {http://eudml.org/doc/108419},
volume = {97},
year = {1997},
}

TY - JOUR
AU - Sankaranarayanan, A.
AU - Srinivas, K.
TI - On a method of Balasubramanian and Ramachandra (on the abelian group problem)
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 97
SP - 135
EP - 161
LA - eng
KW - number of finite non-isomorphic abelian groups; Dirichlet series; Euler product; error term; summatory function; Omega estimation
UR - http://eudml.org/doc/108419
ER -

References

top
  1. [1] R. Balasubramanian, On the frequency of Titchmarsh phenomenon for ζ(s)-IV, Hardy-Ramanujan. J., 9 (1986), pp. 1-10. Zbl0662.10030
  2. [2] R. Balasubramanian - K. RAMACHANDRA, On the frequency of Titchmarsh phenomenon for ζ(s)-III, Proc. Indian Acad. Sci., 86A (1977), pp. 341-351. Zbl0373.10026
  3. [3] R. Balasubramanian - K. Ramachandra, Some problems of analytic number theory-III, Hardy-Ramanujan. J., 4 (1981), pp. 13-40. Zbl0483.10038MR643171
  4. [4] R. Balasubramanian, K. Ramachandra - M.V. Subbarao, On the error function in the asymptotic formula for the counting function of K-full numbers, Acta. Arith., 50 (1988), pp. 107-118. Zbl0652.10033MR945261
  5. [5] D.R. Heath-Brown, The Number of Abelian groups of order at most x, Asterisque (1991), pp. 198-200, 153-163 (Journees Arithmetiques de Lumines 17-21 Juillet (1989)). Zbl0749.11042MR1144320
  6. [6] A. Ivic, The general divisor problem, J. Number Theory, 27 (1987), pp. 73-91. Zbl0619.10040MR904009
  7. [7] G. Kolesnik, On the number of Abelian groups of a given order, J. Riene Angew. Math., 329 (1981), pp. 164-175. Zbl0467.10035MR636451
  8. [8] H.L. Montgomery - R.C. Vaughan, Hilbert's inequality, J. London Math. Soc., 8 (2) (1974), pp. 73-82. Zbl0281.10021MR337775
  9. [9] K. Ramachandra, Some remarks on a theorem of Montgomery and Vaughan, J. Number Theory.11 (1979), pp. 465-471. Zbl0408.10028MR544266
  10. [10] K. Ramachandra, Progress towards a conjecture of the mean-value of Titchmarsh series-I, Recent Progress in Analytic Number Theory 1, edited by H. HALBERSTAM and C. HOOLEY, Academic Press (1981), pp. 303-318. Zbl0465.10033MR637354
  11. [11] K. Ramachandra, Progress towards a conjecture of the mean-value of Titchmarsh series-II, Hardy-Ramanujan. J., 4 (1981), pp. 1-12. Zbl0483.10039MR643170
  12. [12] H.E. Richert, Zur Multiplicativen Zahlentheorie, J. Reine Angew. Math., 206 (1961), pp. 31-38. Zbl0106.03304MR126427
  13. [13] A. Schinzel, On an analytic problem considered by Sierpinski and Ramanujan, to appear. Zbl0767.11045
  14. [14] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function, Second edition, revised by D. R. HEATH-BROWN, Oxford University Press (1986). Zbl0601.10026MR882550

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.