Darboux and Goursat type problems in the trihedral angle for hyperbolic type equations of third order

Otari Jokhadze

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 107-123
  • ISSN: 0041-8994

How to cite

top

Jokhadze, Otari. "Darboux and Goursat type problems in the trihedral angle for hyperbolic type equations of third order." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 107-123. <http://eudml.org/doc/108436>.

@article{Jokhadze1997,
author = {Jokhadze, Otari},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {direct methods},
language = {eng},
pages = {107-123},
publisher = {Seminario Matematico of the University of Padua},
title = {Darboux and Goursat type problems in the trihedral angle for hyperbolic type equations of third order},
url = {http://eudml.org/doc/108436},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Jokhadze, Otari
TI - Darboux and Goursat type problems in the trihedral angle for hyperbolic type equations of third order
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 107
EP - 123
LA - eng
KW - direct methods
UR - http://eudml.org/doc/108436
ER -

References

top
  1. [1] G. Darboux, Leçons sur la théorie générale des surfaces, troisiéme partie, Gauthier-Villars, Paris (1894). Zbl25.1159.02
  2. [2] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, Yale Univ. Press, New Haven; Oxford Univ. Press, London (1923). Zbl49.0725.04JFM49.0725.04
  3. [3] E. Goursat, Cours d'analyse mathématique, t. III, quatr. éd., Gauthier-Villars, Paris (1927). 
  4. [4] O. Jokhadze, On a Darboux problem for a third order hyporbolic equation with multiple characteristics, GeorgianMath. J., 2, No. 5 (1995), pp. 469-490. Zbl0833.35084MR1351335
  5. [5] Beudon, Bull. Soc. Math. Fr., XXV (1897). 
  6. [6] J. Tolen, Probléme de Cauchy sur la deux hypersurfaces caracteristique sécantes, C. R. Acad. Sci. Paris Ser. A-B, 291, No. 1 (1980), pp. A49-A52. Zbl0457.35057MR590987
  7. [7] S.S. Kharibegashvili, On a spatial problem of Darboux type for second order hyporbolic equation, GeorgianMath. J., 2 (1995), No 3, pp. 71-84. Zbl0829.35069MR1334884
  8. [8] S.S. Kharibegashvili, On the solvability of a spatial problem of Darboux type for the wave equation, GeorgianMath. J., 2 (1995), No. 4, pp. 385-394. Zbl0842.35052MR1344302
  9. [9] O. Jokhadze, Spatial problem of Darboux type for one model equation of third order, GeorgianMath. J., 3, No. 6 (1996), pp. 543-560. Zbl0864.35067MR1419834
  10. [10] S.S. Akhiev, Fundamental solutions of some local and nonlocal boundary value problems and their representations (Russian), Dokl. Akad. Nauk SSSR, 271, No. 2 (1983), pp. 265-269. Zbl0539.35009MR718184
  11. [11] R. Di Vincenzo - A. Villani, Sopra un problema ai limiti per un'equazione lineare del terzo ordine di tipo iperbolico. Esistenza, unicità e rappresentazione della soluzione, Le Matematiche, Seminario Matematico dell'Università di Catania, XXXII (1977), pp. 211-238. Zbl0434.35073
  12. [12] Z.O. Melnik, One nonclassical boundary value problem for hyperbolic systems of first order of two independent variables (Russian), Differentsial'nie Uravneniya, 17, No. 6 (1981), pp. 1096-1104. Zbl0486.35047MR620108

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.