-density, -adic completion and -subgeneration

Toma Albu; Robert Wisbauer

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 141-159
  • ISSN: 0041-8994

How to cite

top

Albu, Toma, and Wisbauer, Robert. "$M$-density, $M$-adic completion and $M$-subgeneration." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 141-159. <http://eudml.org/doc/108438>.

@article{Albu1997,
author = {Albu, Toma, Wisbauer, Robert},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linearly topological left modules; -adic completions; ring extensions; complete topological rings; product topology; finite topology; Hausdorff separated linearly compact modules; left linearly compact rings; direct sums},
language = {eng},
pages = {141-159},
publisher = {Seminario Matematico of the University of Padua},
title = {$M$-density, $M$-adic completion and $M$-subgeneration},
url = {http://eudml.org/doc/108438},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Albu, Toma
AU - Wisbauer, Robert
TI - $M$-density, $M$-adic completion and $M$-subgeneration
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 141
EP - 159
LA - eng
KW - linearly topological left modules; -adic completions; ring extensions; complete topological rings; product topology; finite topology; Hausdorff separated linearly compact modules; left linearly compact rings; direct sums
UR - http://eudml.org/doc/108438
ER -

References

top
  1. [1] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, Heidelberg, Berlin (1992). Zbl0301.16001MR1245487
  2. [2] K.R. Fuller, Reflexive representations of algebras, in Abelian Groups and Modules, edited by A. FACCHINI and C. MENINI, Kluwer Academic Pub., Dordrecht (1995). Zbl0847.16021MR1378198
  3. [3] K.R. Fuller - W. K. NICHOLSON - J. F. WATTERS, Reflexive bimodules, Canadian J. Math., 41 (1989), pp. 592-611. Zbl0684.16020MR1012618
  4. [4] K.R. Fuller - W. K. NICHOLSON - J. F. WATTERS, Universally reflexive algebras, Linear Algebra Appl., 157 (1991), pp. 195-201. Zbl0748.16008MR1123867
  5. [5] G. Hauger - W. ZIMMERMANN, Lokalisierung, Vervollstandigung von Ringen und Bikommutatoren von Moduln, Algebra-Berichte, 18 (1974), Math. Inst. Univ. München. Zbl0313.16004
  6. [6] H. Leptinn, Linear kompakte Moduln und Ringe, Math. Z., 62 (1955), pp. 241-267. Zbl0064.03201MR69811
  7. [7] I.G. Macdonald, Duality over complete local rings, Topology, 1 (1962), pp. 213-235. Zbl0108.26401MR151491
  8. [8] C. Menini - A. Orsatti, Good dualities and strongly quasi-injective modules, Ann. Mat. Pura Appl. (Ser. 4), 77 (1981), pp. 187-230. Zbl0476.16029MR633400
  9. [9] F.L. Sandomierski, Linearly compact modules and local Morita duality, in Ring Theory, edited by R. GORDON, Academic Press, New York, London (1972), pp. 333-346. Zbl0234.16013MR344288
  10. [10] N. Snashall - J.F. Watters, Reflexive bimodules and linear compactness, Comm. Algebra, 22 (15) (1994), pp. 6025-6035. Zbl0822.16001MR1302991
  11. [11] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl0296.16001MR389953
  12. [12] P. Vámos, Classical rings, J. Algebra, 34 (1975), pp. 114-129. Zbl0331.13006MR382250
  13. [13] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991). Zbl0746.16001MR1144522
  14. [14] R. Wisbauer, On module classes closed under extensions, Proc. of Conf. «Rings and Radicals», Shijiazhuang 1994, Pitman RN (1996). Zbl0849.16007MR1396565
  15. [15] B. Zimmermann-Huisgen, Endomorphism rings of self-generators, Pacific J. Math., 61 (1975), pp. 587-602. Zbl0306.16021MR404322

NotesEmbed ?

top

You must be logged in to post comments.