M -density, M -adic completion and M -subgeneration

Toma Albu; Robert Wisbauer

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 141-159
  • ISSN: 0041-8994

How to cite

top

Albu, Toma, and Wisbauer, Robert. "$M$-density, $M$-adic completion and $M$-subgeneration." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 141-159. <http://eudml.org/doc/108438>.

@article{Albu1997,
author = {Albu, Toma, Wisbauer, Robert},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linearly topological left modules; -adic completions; ring extensions; complete topological rings; product topology; finite topology; Hausdorff separated linearly compact modules; left linearly compact rings; direct sums},
language = {eng},
pages = {141-159},
publisher = {Seminario Matematico of the University of Padua},
title = {$M$-density, $M$-adic completion and $M$-subgeneration},
url = {http://eudml.org/doc/108438},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Albu, Toma
AU - Wisbauer, Robert
TI - $M$-density, $M$-adic completion and $M$-subgeneration
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 141
EP - 159
LA - eng
KW - linearly topological left modules; -adic completions; ring extensions; complete topological rings; product topology; finite topology; Hausdorff separated linearly compact modules; left linearly compact rings; direct sums
UR - http://eudml.org/doc/108438
ER -

References

top
  1. [1] F.W. Anderson - K.R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, Heidelberg, Berlin (1992). Zbl0301.16001MR1245487
  2. [2] K.R. Fuller, Reflexive representations of algebras, in Abelian Groups and Modules, edited by A. FACCHINI and C. MENINI, Kluwer Academic Pub., Dordrecht (1995). Zbl0847.16021MR1378198
  3. [3] K.R. Fuller - W. K. NICHOLSON - J. F. WATTERS, Reflexive bimodules, Canadian J. Math., 41 (1989), pp. 592-611. Zbl0684.16020MR1012618
  4. [4] K.R. Fuller - W. K. NICHOLSON - J. F. WATTERS, Universally reflexive algebras, Linear Algebra Appl., 157 (1991), pp. 195-201. Zbl0748.16008MR1123867
  5. [5] G. Hauger - W. ZIMMERMANN, Lokalisierung, Vervollstandigung von Ringen und Bikommutatoren von Moduln, Algebra-Berichte, 18 (1974), Math. Inst. Univ. München. Zbl0313.16004
  6. [6] H. Leptinn, Linear kompakte Moduln und Ringe, Math. Z., 62 (1955), pp. 241-267. Zbl0064.03201MR69811
  7. [7] I.G. Macdonald, Duality over complete local rings, Topology, 1 (1962), pp. 213-235. Zbl0108.26401MR151491
  8. [8] C. Menini - A. Orsatti, Good dualities and strongly quasi-injective modules, Ann. Mat. Pura Appl. (Ser. 4), 77 (1981), pp. 187-230. Zbl0476.16029MR633400
  9. [9] F.L. Sandomierski, Linearly compact modules and local Morita duality, in Ring Theory, edited by R. GORDON, Academic Press, New York, London (1972), pp. 333-346. Zbl0234.16013MR344288
  10. [10] N. Snashall - J.F. Watters, Reflexive bimodules and linear compactness, Comm. Algebra, 22 (15) (1994), pp. 6025-6035. Zbl0822.16001MR1302991
  11. [11] B. Stenström, Rings of Quotients, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl0296.16001MR389953
  12. [12] P. Vámos, Classical rings, J. Algebra, 34 (1975), pp. 114-129. Zbl0331.13006MR382250
  13. [13] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Reading (1991). Zbl0746.16001MR1144522
  14. [14] R. Wisbauer, On module classes closed under extensions, Proc. of Conf. «Rings and Radicals», Shijiazhuang 1994, Pitman RN (1996). Zbl0849.16007MR1396565
  15. [15] B. Zimmermann-Huisgen, Endomorphism rings of self-generators, Pacific J. Math., 61 (1975), pp. 587-602. Zbl0306.16021MR404322

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.