Automatic realizations of Galois groups with cyclic quotient of order
Ján Mináč[1]; Andrew Schultz[2]; John Swallow[3]
- [1] Department of Mathematics Middlesex College University of Western Ontario London, Ontario N6A 5B7 CANADA
- [2] Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL 61801 USA
- [3] Department of Mathematics Davidson College Box 7046 Davidson, North Carolina 28035-7046 USA
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 2, page 419-430
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMináč, Ján, Schultz, Andrew, and Swallow, John. "Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 419-430. <http://eudml.org/doc/10844>.
@article{Mináč2008,
abstract = {We establish automatic realizations of Galois groups among groups $M\rtimes G$, where $G$ is a cyclic group of order $p^n$ for a prime $p$ and $M$ is a quotient of the group ring $\mathbb\{F\}_p[G]$.},
affiliation = {Department of Mathematics Middlesex College University of Western Ontario London, Ontario N6A 5B7 CANADA; Department of Mathematics University of Illinois at Urbana-Champaign 1409 W. Green Street Urbana, IL 61801 USA; Department of Mathematics Davidson College Box 7046 Davidson, North Carolina 28035-7046 USA},
author = {Mináč, Ján, Schultz, Andrew, Swallow, John},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {inverse Galois theory; Kummer theory; Galois modules; Galois group; metacyclic group; -group},
language = {eng},
number = {2},
pages = {419-430},
publisher = {Université Bordeaux 1},
title = {Automatic realizations of Galois groups with cyclic quotient of order $\{p^n\}$},
url = {http://eudml.org/doc/10844},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Mináč, Ján
AU - Schultz, Andrew
AU - Swallow, John
TI - Automatic realizations of Galois groups with cyclic quotient of order ${p^n}$
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 419
EP - 430
AB - We establish automatic realizations of Galois groups among groups $M\rtimes G$, where $G$ is a cyclic group of order $p^n$ for a prime $p$ and $M$ is a quotient of the group ring $\mathbb{F}_p[G]$.
LA - eng
KW - inverse Galois theory; Kummer theory; Galois modules; Galois group; metacyclic group; -group
UR - http://eudml.org/doc/10844
ER -
References
top- F. Anderson, K. Fuller, Rings and categories of modules. Graduate Texts in Mathematics 13. New York: Springer-Verlag, 1973. Zbl0301.16001MR1245487
- H. G. Grundman, T. L. Smith, Automatic realizability of Galois groups of order . Proc. Amer. Math. Soc. 124 (1996), no. 9, 2631–2640. Zbl0862.12005MR1327017
- H. G. Grundman, T. L. Smith, and J. R. Swallow, Groups of order as Galois groups. Exposition. Math. 13 (1995), 289–319. Zbl0838.12004MR1358210
- C. U. Jensen, On the representations of a group as a Galois group over an arbitrary field. Théorie des nombres (Quebec, PQ, 1987), 441–458. Berlin: de Gruyter, 1989. Zbl0696.12019MR1024582
- C. U. Jensen, Finite groups as Galois groups over arbitrary fields. Proceedings of the International Conference on Algebra, Part 2 (Novosibirsk, 1989), 435–448. Contemp. Math. 131, Part 2. Providence, RI: American Mathematical Society, 1992. Zbl0780.12004MR1175848
- C. U. Jensen, Elementary questions in Galois theory. Advances in algebra and model theory (Essen, 1994; Dresden, 1995), 11–24. Algebra Logic Appl. 9. Amsterdam: Gordon and Breach, 1997. Zbl0939.12001MR1683567
- C. U. Jensen, A. Ledet, N. Yui, Generic polynomials: constructive aspects of the inverse Galois problem. Mathematical Sciences Research Institute Publications 45. Cambridge: Cambridge University Press, 2002. Zbl1042.12001MR1969648
- T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics 189. New York: Springer-Verlag, 1999. Zbl0911.16001MR1653294
- A. Ledet, Brauer type embedding problems. Fields Institute Monographs 21. Providence, RI: American Mathematical Society, 2005. Zbl1064.12003MR2126031
- J. Mináč, J. Swallow, Galois module structure of th-power classes of extensions of degree . Israel J. Math. 138 (2003), 29–42. Zbl1040.12006MR2031948
- J. Mináč, J. Swallow, Galois embedding problems with cyclic quotient of order . Israel J. Math. 145 (2005), 93–112. Zbl1069.12002MR2154722
- J. Mináč, A. Schultz, J. Swallow, Galois module structure of the th-power classes of cyclic extensions of degree . Proc. London Math. Soc. 92 (2006), no. 2, 307–341. Zbl1157.12002MR2205719
- D. Saltman, Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), 250–283. Zbl0484.12004MR648801
- D. Sharpe, P. Vámos, Injective modules. Cambridge Tracts in Mathematics and Mathematical Physics 62. London: Cambridge University Press, 1972. Zbl0245.13001MR360706
- W. Waterhouse, The normal closures of certain Kummer extensions. Canad. Math. Bull. 37 (1994), no. 1, 133–139. Zbl0794.12003MR1261568
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.