Convolution in ( W M , a p ) ' -space

R. S. Pathak; S. K. Upadhyay

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 57-65
  • ISSN: 0041-8994

How to cite

top

Pathak, R. S., and Upadhyay, S. K.. "Convolution in $(W^p_{M, \ a})^{\prime }$-space." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 57-65. <http://eudml.org/doc/108449>.

@article{Pathak1997,
author = {Pathak, R. S., Upadhyay, S. K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convolutors; Fourier transform; convolution},
language = {eng},
pages = {57-65},
publisher = {Seminario Matematico of the University of Padua},
title = {Convolution in $(W^p_\{M, \ a\})^\{\prime \}$-space},
url = {http://eudml.org/doc/108449},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Pathak, R. S.
AU - Upadhyay, S. K.
TI - Convolution in $(W^p_{M, \ a})^{\prime }$-space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 57
EP - 65
LA - eng
KW - convolutors; Fourier transform; convolution
UR - http://eudml.org/doc/108449
ER -

References

top
  1. [1] R.D. Carmichael, Generalized Cauchy and Poisson integrals and distributional boundary values, SIAM J. Math. Anal., 4 (1) (1973), pp. 198-219. Zbl0225.46035MR350054
  2. [2] A. Friedman, Generalized Functions and PartialDifferential Equations, Prentice-Hall, New Jersey (1963). Zbl0116.07002MR165388
  3. [3] I.M. Gel'fand - G.E. Shilov, Generalized Functions, Vol. 2, Academic Press, New York (1968). MR230128
  4. [4] I.M. Gel'fand - G.E. Shilov, Generalized Functions, Vol. 3, Academic Press, New York (1969). 
  5. [5] M. Hausmi, Note on n-dimensional tempered ultradistributions, Tôhoku Math. J., (2), 13 (1961), pp. 94-104. Zbl0103.09201MR131759
  6. [6] R.S. Pathak - S.K. Upadhyay, Wp spaces and Fourier transform, Proc. Amer. Math. Soc., 121 (3) (1994), pp. 733-738. Zbl0816.46033MR1185272
  7. [7] S. Pilipovic, Multipliers, convolutors and hypoelliptic convolutors of tempered ultradistributions, in Proceedings of International Symposium on Generalized Functions and their Application held in Varanasi, Dec. 23-26 (1991), edited by R. S. PATHAK, Plenum Press, New York (1992), pp. 183-195. Zbl0841.46026MR1240076
  8. [8] L. Schwartz, Théorie des distributions, Hermann, Paris (1966). Zbl0962.46025MR209834
  9. [9] C. Swartz, Convolution in K{Mp} spaces, Rocky Mountain J. Math., 2 (1972), pp. 259-163. Zbl0233.46055MR291801
  10. [10] G. Sampson - Z. Zielezny, Hypoelliptic convolution equations in K'p, p &gt; 1, Trans. Amer. Math. Soc., 223 (1976), pp. 133-154. Zbl0352.46026MR425607
  11. [11] Z. Zielezny, On spaces of convolutor operators in K' 1, Studia Math., 31 (1968), pp. 111-124. Zbl0182.45603

NotesEmbed ?

top

You must be logged in to post comments.