Convolution in ( W M , a p ) ' -space

R. S. Pathak; S. K. Upadhyay

Rendiconti del Seminario Matematico della Università di Padova (1997)

  • Volume: 98, page 57-65
  • ISSN: 0041-8994

How to cite

top

Pathak, R. S., and Upadhyay, S. K.. "Convolution in $(W^p_{M, \ a})^{\prime }$-space." Rendiconti del Seminario Matematico della Università di Padova 98 (1997): 57-65. <http://eudml.org/doc/108449>.

@article{Pathak1997,
author = {Pathak, R. S., Upadhyay, S. K.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {convolutors; Fourier transform; convolution},
language = {eng},
pages = {57-65},
publisher = {Seminario Matematico of the University of Padua},
title = {Convolution in $(W^p_\{M, \ a\})^\{\prime \}$-space},
url = {http://eudml.org/doc/108449},
volume = {98},
year = {1997},
}

TY - JOUR
AU - Pathak, R. S.
AU - Upadhyay, S. K.
TI - Convolution in $(W^p_{M, \ a})^{\prime }$-space
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1997
PB - Seminario Matematico of the University of Padua
VL - 98
SP - 57
EP - 65
LA - eng
KW - convolutors; Fourier transform; convolution
UR - http://eudml.org/doc/108449
ER -

References

top
  1. [1] R.D. Carmichael, Generalized Cauchy and Poisson integrals and distributional boundary values, SIAM J. Math. Anal., 4 (1) (1973), pp. 198-219. Zbl0225.46035MR350054
  2. [2] A. Friedman, Generalized Functions and PartialDifferential Equations, Prentice-Hall, New Jersey (1963). Zbl0116.07002MR165388
  3. [3] I.M. Gel'fand - G.E. Shilov, Generalized Functions, Vol. 2, Academic Press, New York (1968). MR230128
  4. [4] I.M. Gel'fand - G.E. Shilov, Generalized Functions, Vol. 3, Academic Press, New York (1969). 
  5. [5] M. Hausmi, Note on n-dimensional tempered ultradistributions, Tôhoku Math. J., (2), 13 (1961), pp. 94-104. Zbl0103.09201MR131759
  6. [6] R.S. Pathak - S.K. Upadhyay, Wp spaces and Fourier transform, Proc. Amer. Math. Soc., 121 (3) (1994), pp. 733-738. Zbl0816.46033MR1185272
  7. [7] S. Pilipovic, Multipliers, convolutors and hypoelliptic convolutors of tempered ultradistributions, in Proceedings of International Symposium on Generalized Functions and their Application held in Varanasi, Dec. 23-26 (1991), edited by R. S. PATHAK, Plenum Press, New York (1992), pp. 183-195. Zbl0841.46026MR1240076
  8. [8] L. Schwartz, Théorie des distributions, Hermann, Paris (1966). Zbl0962.46025MR209834
  9. [9] C. Swartz, Convolution in K{Mp} spaces, Rocky Mountain J. Math., 2 (1972), pp. 259-163. Zbl0233.46055MR291801
  10. [10] G. Sampson - Z. Zielezny, Hypoelliptic convolution equations in K'p, p &gt; 1, Trans. Amer. Math. Soc., 223 (1976), pp. 133-154. Zbl0352.46026MR425607
  11. [11] Z. Zielezny, On spaces of convolutor operators in K' 1, Studia Math., 31 (1968), pp. 111-124. Zbl0182.45603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.