Some conditions implying that an infinite group is abelian

Luise-Charlotte Kappe; M. J. Tomkinson

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 187-209
  • ISSN: 0041-8994

How to cite

top

Kappe, Luise-Charlotte, and Tomkinson, M. J.. "Some conditions implying that an infinite group is abelian." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 187-209. <http://eudml.org/doc/108456>.

@article{Kappe1998,
author = {Kappe, Luise-Charlotte, Tomkinson, M. J.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinite groups; words; permutation properties; infinite sets of elements; central-by-finite groups; soluble-by-finite groups},
language = {eng},
pages = {187-209},
publisher = {Seminario Matematico of the University of Padua},
title = {Some conditions implying that an infinite group is abelian},
url = {http://eudml.org/doc/108456},
volume = {100},
year = {1998},
}

TY - JOUR
AU - Kappe, Luise-Charlotte
AU - Tomkinson, M. J.
TI - Some conditions implying that an infinite group is abelian
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 187
EP - 209
LA - eng
KW - infinite groups; words; permutation properties; infinite sets of elements; central-by-finite groups; soluble-by-finite groups
UR - http://eudml.org/doc/108456
ER -

References

top
  1. [1] C. Delizia, Finitely generated soluble groups with a condition on infinite subsets, Istit. Lombardo Accad. Sci. Lett. Rend. A, 128 (1994), pp. 201-208. Zbl0882.20020MR1433488
  2. [2] V. Faber - R. LAVER - R. McKENZIE, Coverings of groups by abelian subgroups, Canad. J. Math., 30 (1978), pp. 933-945. Zbl0349.20015MR506252
  3. [3] J.R.J. Groves, A conjecture of Lennox and Wiegold concerning supersolvable groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. Zbl0492.20019MR638274
  4. [4] N.D. Gupta, Some group-laws equivalent to the commutative law, Arch. Math., 17 (1966), pp. 97-102. Zbl0135.04302MR195940
  5. [5] M. Hall, The Theory of Groups, TheMacmillan Company, New York (1959). Zbl0084.02202MR103215
  6. [6] L.-C. Kappe - M. J. TOMKINSON, ,Some conditions impLying that a group is abelian, Algebra Colloquium, 3 (1996), pp. 199-212. Zbl0855.20027MR1412650
  7. [7] O.H. Kegel - B. A. F. WEHRFRITZ, Locally Finite Groups, North-Holland, Amsterdam (1973). Zbl0259.20001MR470081
  8. [8] P.S. Kim - A.H. Rhemtulla - H. Smith, A characterization of infinite metabelian groups, Houston J. Math., 17 (1991), pp. 429-437. Zbl0744.20033MR1126607
  9. [9] P. Longobardi - M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, 89.(1993), pp. 97-102. Zbl0797.20031MR1229046
  10. [10] P. Longobardi - M. MAJ, A finiteness condition concerning commutators in groups, Houston J. Math., 19 (1993), pp. 505-512. Zbl0813.20026MR1251605
  11. [11] P. Longobardi - M. MAJ - A. H. RHEMTULLA, Infinite groups in a given variety and Ramsey's theorem, Comm. Algebra, 20 (1992), pp. 127-139. Zbl0751.20020MR1145329
  12. [12] J.C. Lennox - J. WIEGOLD, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. Zbl0492.20019MR638274
  13. [13] B.H. Neumann, A probLem of Paul Erdös on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472. Zbl0333.05110MR419283
  14. [14] O. Puglisi - L.S. Spiezia, A combinatorial property of certain infinite groups, Comm. Algebra, 22 (1994), pp. 1457-1465. Zbl0803.20024MR1261270
  15. [15] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, Berlin, Heidelberg (1982). Zbl0483.20001MR648604
  16. [16] L.S. Spiezia, A property of the variety of 2-Engel groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 225-228. Zbl0816.20027MR1289638
  17. [17] M.J. Tomkinson, FC-Groups, Pitman, Boston, London, Melbourne (1973). Zbl0547.20031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.