Some conditions implying that an infinite group is abelian
Luise-Charlotte Kappe; M. J. Tomkinson
Rendiconti del Seminario Matematico della Università di Padova (1998)
- Volume: 100, page 187-209
- ISSN: 0041-8994
Access Full Article
topHow to cite
topKappe, Luise-Charlotte, and Tomkinson, M. J.. "Some conditions implying that an infinite group is abelian." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 187-209. <http://eudml.org/doc/108456>.
@article{Kappe1998,
author = {Kappe, Luise-Charlotte, Tomkinson, M. J.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {infinite groups; words; permutation properties; infinite sets of elements; central-by-finite groups; soluble-by-finite groups},
language = {eng},
pages = {187-209},
publisher = {Seminario Matematico of the University of Padua},
title = {Some conditions implying that an infinite group is abelian},
url = {http://eudml.org/doc/108456},
volume = {100},
year = {1998},
}
TY - JOUR
AU - Kappe, Luise-Charlotte
AU - Tomkinson, M. J.
TI - Some conditions implying that an infinite group is abelian
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 187
EP - 209
LA - eng
KW - infinite groups; words; permutation properties; infinite sets of elements; central-by-finite groups; soluble-by-finite groups
UR - http://eudml.org/doc/108456
ER -
References
top- [1] C. Delizia, Finitely generated soluble groups with a condition on infinite subsets, Istit. Lombardo Accad. Sci. Lett. Rend. A, 128 (1994), pp. 201-208. Zbl0882.20020MR1433488
- [2] V. Faber - R. LAVER - R. McKENZIE, Coverings of groups by abelian subgroups, Canad. J. Math., 30 (1978), pp. 933-945. Zbl0349.20015MR506252
- [3] J.R.J. Groves, A conjecture of Lennox and Wiegold concerning supersolvable groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. Zbl0492.20019MR638274
- [4] N.D. Gupta, Some group-laws equivalent to the commutative law, Arch. Math., 17 (1966), pp. 97-102. Zbl0135.04302MR195940
- [5] M. Hall, The Theory of Groups, TheMacmillan Company, New York (1959). Zbl0084.02202MR103215
- [6] L.-C. Kappe - M. J. TOMKINSON, ,Some conditions impLying that a group is abelian, Algebra Colloquium, 3 (1996), pp. 199-212. Zbl0855.20027MR1412650
- [7] O.H. Kegel - B. A. F. WEHRFRITZ, Locally Finite Groups, North-Holland, Amsterdam (1973). Zbl0259.20001MR470081
- [8] P.S. Kim - A.H. Rhemtulla - H. Smith, A characterization of infinite metabelian groups, Houston J. Math., 17 (1991), pp. 429-437. Zbl0744.20033MR1126607
- [9] P. Longobardi - M. MAJ, Finitely generated soluble groups with an Engel condition on infinite subsets, Rend. Sem. Mat. Univ. Padova, 89.(1993), pp. 97-102. Zbl0797.20031MR1229046
- [10] P. Longobardi - M. MAJ, A finiteness condition concerning commutators in groups, Houston J. Math., 19 (1993), pp. 505-512. Zbl0813.20026MR1251605
- [11] P. Longobardi - M. MAJ - A. H. RHEMTULLA, Infinite groups in a given variety and Ramsey's theorem, Comm. Algebra, 20 (1992), pp. 127-139. Zbl0751.20020MR1145329
- [12] J.C. Lennox - J. WIEGOLD, Extensions of a problem of Paul Erdös on groups, J. Austral. Math. Soc., 31 (1981), pp. 459-463. Zbl0492.20019MR638274
- [13] B.H. Neumann, A probLem of Paul Erdös on groups, J. Austral. Math. Soc., 21 (1976), pp. 467-472. Zbl0333.05110MR419283
- [14] O. Puglisi - L.S. Spiezia, A combinatorial property of certain infinite groups, Comm. Algebra, 22 (1994), pp. 1457-1465. Zbl0803.20024MR1261270
- [15] D.J.S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, Berlin, Heidelberg (1982). Zbl0483.20001MR648604
- [16] L.S. Spiezia, A property of the variety of 2-Engel groups, Rend. Sem. Mat. Univ. Padova, 91 (1994), pp. 225-228. Zbl0816.20027MR1289638
- [17] M.J. Tomkinson, FC-Groups, Pitman, Boston, London, Melbourne (1973). Zbl0547.20031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.