A note on groups with hamiltonian quotients

R. A. Bryce; John Cossey

Rendiconti del Seminario Matematico della Università di Padova (1998)

  • Volume: 100, page 1-11
  • ISSN: 0041-8994

How to cite

top

Bryce, R. A., and Cossey, John. "A note on groups with hamiltonian quotients." Rendiconti del Seminario Matematico della Università di Padova 100 (1998): 1-11. <http://eudml.org/doc/108457>.

@article{Bryce1998,
author = {Bryce, R. A., Cossey, John},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {norms of groups; normalizers; characteristic subgroups; ascending series of subgroups; non-Hamiltonian 2-groups; Hamiltonian factors},
language = {eng},
pages = {1-11},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on groups with hamiltonian quotients},
url = {http://eudml.org/doc/108457},
volume = {100},
year = {1998},
}

TY - JOUR
AU - Bryce, R. A.
AU - Cossey, John
TI - A note on groups with hamiltonian quotients
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1998
PB - Seminario Matematico of the University of Padua
VL - 100
SP - 1
EP - 11
LA - eng
KW - norms of groups; normalizers; characteristic subgroups; ascending series of subgroups; non-Hamiltonian 2-groups; Hamiltonian factors
UR - http://eudml.org/doc/108457
ER -

References

top
  1. [1] R. Baer, Gruppen mit Hamiltonschen Kern, Compositio Math., 2 (1935), pp. 241-246. JFM61.0101.02
  2. [2] G. Baumslag, Wreath products and p-groups, Proc. Cambridge Philos. Soc., 55 (1959), pp. 224-231. Zbl0089.01401MR105437
  3. [3] R.A. Bryce - J. CossEY, A note on Hamiltonian 2-groups, Rend. Sem. Mat. Univ. Padova, 86 (1991), pp. 175-182. Zbl0799.20023MR1154106
  4. [4] R. Dedekind, Über Gruppen deren sämtliche Teiler Normalteiler sind, Math. Ann., 48 (1897), pp. 548-561. Zbl28.0129.03MR1510943JFM28.0129.03
  5. [5] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York (1967). Zbl0217.07201MR224703
  6. [6] D.H. McLain, Remarks on the upper central series of a group, Proc. Glasgow Math. Assoc., 3 (1956), pp. 38-44. Zbl0072.25702MR84498
  7. [7] M.F. Newman - E.A. O'Brien, A library for the groups of order 128, The Cayley Bulletin, No.3 (1987), pp. 74-75. 
  8. [8] E.A. Ormerod, Groups of Wielandt length two, Math. Proc. Cambridge Phil. Soc., 110 (1991), pp. 229-244. Zbl0741.20012MR1113421
  9. [9] E. Schenkman, On the norm of a group, Illinois J. Math., 4 (1960), pp. 150-152. Zbl0099.25104MR113928

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.