On rational torsion points of central -curves
Fumio Sairaiji[1]; Takuya Yamauchi[2]
- [1] Hiroshima International University, Hiro, Hiroshima 737-0112, Japan
- [2] Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
Journal de Théorie des Nombres de Bordeaux (2008)
- Volume: 20, Issue: 2, page 465-483
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSairaiji, Fumio, and Yamauchi, Takuya. "On rational torsion points of central $\mathbb{Q}$-curves." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 465-483. <http://eudml.org/doc/10846>.
@article{Sairaiji2008,
abstract = {Let $E$ be a central $\mathbb\{Q\}$-curve over a polyquadratic field $k$. In this article we give an upper bound for prime divisors of the order of the $k$-rational torsion subgroup $E_\{tors\}(k)$ (see Theorems 1.1 and 1.2). The notion of central $\mathbb\{Q\}$-curves is a generalization of that of elliptic curves over $\mathbb\{Q\}$. Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].},
affiliation = {Hiroshima International University, Hiro, Hiroshima 737-0112, Japan; Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan},
author = {Sairaiji, Fumio, Yamauchi, Takuya},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {class of -curves without complex multiplications; Oesterlé bound},
language = {eng},
number = {2},
pages = {465-483},
publisher = {Université Bordeaux 1},
title = {On rational torsion points of central $\mathbb\{Q\}$-curves},
url = {http://eudml.org/doc/10846},
volume = {20},
year = {2008},
}
TY - JOUR
AU - Sairaiji, Fumio
AU - Yamauchi, Takuya
TI - On rational torsion points of central $\mathbb{Q}$-curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 465
EP - 483
AB - Let $E$ be a central $\mathbb{Q}$-curve over a polyquadratic field $k$. In this article we give an upper bound for prime divisors of the order of the $k$-rational torsion subgroup $E_{tors}(k)$ (see Theorems 1.1 and 1.2). The notion of central $\mathbb{Q}$-curves is a generalization of that of elliptic curves over $\mathbb{Q}$. Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].
LA - eng
KW - class of -curves without complex multiplications; Oesterlé bound
UR - http://eudml.org/doc/10846
ER -
References
top- J. Cremona, Algorithms for modular elliptic curves. Cambridge: Cambridge University Press, 1992. Zbl0758.14042MR1201151
- P. Deligne, M. Rapoport,Schémas de modules de courbes elliptiques. Lecture Notes in Math. 349, Springer, Berlin-Heiderlberg-New York, 1973. Zbl0281.14010MR337993
- N.D. Elkies,On elliptic -curves. In Modular curves and abelian varieties, Birkhäuser, 2004. Zbl1166.11335MR2058644
- M. Furumoto, Y. Hasegawa, Hyperelliptic quotients of modular curves . Tokyo J. Math. 22 (1999), 105–125. Zbl0947.11019MR1692024
- A. Grothendieck, Groupes de monodromie en géometrie algébrique. In Séminaire de Géometrie Algébrique, Springer, 1972/3. Zbl0237.00013MR354656
- Y. Hasegawa, -curves over quadratic fields. Manuscripta Math. 94 (1997), 347–364. Zbl0909.11017MR1485442
- G. Karpilovsky, Group representations, Vol. 2. Elsevier, Amsterdam, 1993. Zbl0778.20001MR1215935
- S. Kamienny,On the torsion subgroups of elliptic curves over totally real field. Invent. Math. 83 (1986), 545–551. Zbl0585.14023MR827366
- S. Kamienny,Torsion points on elliptic curves and -coefficients of modular forms. Invent. Math. 109 (1992), 221–229. Zbl0773.14016MR1172689
- M. Kenku, F. Momose,Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125–149. Zbl0647.14020MR931956
- D.S. Kubert,Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. 33 (1976), 193–237. Zbl0331.14010MR434947
- B. Mazur, Rational points on modular curves. In Modular functions of one variable V, Springer, Berlin, 1977. Zbl0357.14005MR450283
- B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1978), 33–186. Zbl0394.14008MR488287
- B. Mazur, Rational isogenies of prime degree. Invent Math. 44 (1978), 129–162. Zbl0386.14009MR482230
- L. Merel,Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437–449. Zbl0936.11037MR1369424
- K. Murty,The addition law on hyperelliptic Jacobians. Currents trends in number theory (Allahabad, 2000), 101–110, Hindustan Book Agency, New Delhi, 2002. Zbl1092.14508MR1925645
- J. Oesterlé,Torsion des courbes elliptiques sur les corps de nombres, preprint. Zbl0737.14004
- P. Parent,Borne effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew Math. 503 (1999), 129–160. Zbl0919.11040MR1665681
- E.E. Pyle,Abelian varieties over with large endomorphism algebras and their simple components over . In Modular curves and abelian varieties, Birkhäuser, 2004. Zbl1116.11040MR2058652
- J. Quer,-curves and abelian varieties of GL-type. Proc. London Math. Soc. 81 (2000), 285–317. Zbl1035.11026MR1770611
- M. Raynaud,Schémas en groupes de type . Bull. Soc Math. Fr. 102 (1974), 241–280. Zbl0325.14020MR419467
- K. Ribet,A modular construction of unramified -extension of . Invent. Math. 34 (1976), 151–162. Zbl0338.12003MR419403
- J.-P. Serre, J. Tate,Good reduction of abelian varieties. Ann. Math. 88 (1968), 492–517. Zbl0172.46101MR236190
- J. Tate,Algorithm for determining the type of a singular fibre in an elliptic pencil. In Modular Function of One Variable IV, Springer-Verlag, 1975. Zbl1214.14020MR393039
- T. Yamauchi, On -simple factors of Jacobian varieties of modular curves. Yokohama Math. J. 53 (2007), no. 2, 149–160. Zbl1132.14025MR2302608
- L.C. Washington,Introduction to cyclotomic fields. Springer-Verlag New-York, 1997. Zbl0966.11047MR1421575
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.