On rational torsion points of central -curves

Fumio Sairaiji[1]; Takuya Yamauchi[2]

  • [1] Hiroshima International University, Hiro, Hiroshima 737-0112, Japan
  • [2] Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 2, page 465-483
  • ISSN: 1246-7405

Abstract

top
Let E be a central -curve over a polyquadratic field k . In this article we give an upper bound for prime divisors of the order of the k -rational torsion subgroup E t o r s ( k ) (see Theorems 1.1 and 1.2). The notion of central -curves is a generalization of that of elliptic curves over . Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].

How to cite

top

Sairaiji, Fumio, and Yamauchi, Takuya. "On rational torsion points of central $\mathbb{Q}$-curves." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 465-483. <http://eudml.org/doc/10846>.

@article{Sairaiji2008,
abstract = {Let $E$ be a central $\mathbb\{Q\}$-curve over a polyquadratic field $k$. In this article we give an upper bound for prime divisors of the order of the $k$-rational torsion subgroup $E_\{tors\}(k)$ (see Theorems 1.1 and 1.2). The notion of central $\mathbb\{Q\}$-curves is a generalization of that of elliptic curves over $\mathbb\{Q\}$. Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].},
affiliation = {Hiroshima International University, Hiro, Hiroshima 737-0112, Japan; Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan},
author = {Sairaiji, Fumio, Yamauchi, Takuya},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {class of -curves without complex multiplications; Oesterlé bound},
language = {eng},
number = {2},
pages = {465-483},
publisher = {Université Bordeaux 1},
title = {On rational torsion points of central $\mathbb\{Q\}$-curves},
url = {http://eudml.org/doc/10846},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Sairaiji, Fumio
AU - Yamauchi, Takuya
TI - On rational torsion points of central $\mathbb{Q}$-curves
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 465
EP - 483
AB - Let $E$ be a central $\mathbb{Q}$-curve over a polyquadratic field $k$. In this article we give an upper bound for prime divisors of the order of the $k$-rational torsion subgroup $E_{tors}(k)$ (see Theorems 1.1 and 1.2). The notion of central $\mathbb{Q}$-curves is a generalization of that of elliptic curves over $\mathbb{Q}$. Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].
LA - eng
KW - class of -curves without complex multiplications; Oesterlé bound
UR - http://eudml.org/doc/10846
ER -

References

top
  1. J. Cremona, Algorithms for modular elliptic curves. Cambridge: Cambridge University Press, 1992. Zbl0758.14042MR1201151
  2. P. Deligne, M. Rapoport,Schémas de modules de courbes elliptiques. Lecture Notes in Math. 349, Springer, Berlin-Heiderlberg-New York, 1973. Zbl0281.14010MR337993
  3. N.D. Elkies,On elliptic K -curves. In Modular curves and abelian varieties, Birkhäuser, 2004. Zbl1166.11335MR2058644
  4. M. Furumoto, Y. Hasegawa, Hyperelliptic quotients of modular curves X 0 ( N ) . Tokyo J. Math. 22 (1999), 105–125. Zbl0947.11019MR1692024
  5. A. Grothendieck, Groupes de monodromie en géometrie algébrique. In Séminaire de Géometrie Algébrique, Springer, 1972/3. Zbl0237.00013MR354656
  6. Y. Hasegawa, -curves over quadratic fields. Manuscripta Math. 94 (1997), 347–364. Zbl0909.11017MR1485442
  7. G. Karpilovsky, Group representations, Vol. 2. Elsevier, Amsterdam, 1993. Zbl0778.20001MR1215935
  8. S. Kamienny,On the torsion subgroups of elliptic curves over totally real field. Invent. Math. 83 (1986), 545–551. Zbl0585.14023MR827366
  9. S. Kamienny,Torsion points on elliptic curves and q -coefficients of modular forms. Invent. Math. 109 (1992), 221–229. Zbl0773.14016MR1172689
  10. M. Kenku, F. Momose,Torsion points on elliptic curves defined over quadratic fields. Nagoya Math. J. 109 (1988), 125–149. Zbl0647.14020MR931956
  11. D.S. Kubert,Universal bounds on the torsion of elliptic curves. Proc. London Math. Soc. 33 (1976), 193–237. Zbl0331.14010MR434947
  12. B. Mazur, Rational points on modular curves. In Modular functions of one variable V, Springer, Berlin, 1977. Zbl0357.14005MR450283
  13. B. Mazur, Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1978), 33–186. Zbl0394.14008MR488287
  14. B. Mazur, Rational isogenies of prime degree. Invent Math. 44 (1978), 129–162. Zbl0386.14009MR482230
  15. L. Merel,Bornes pour la torsion des courbes elliptiques sur les corps de nombres. Invent. Math. 124 (1996), 437–449. Zbl0936.11037MR1369424
  16. K. Murty,The addition law on hyperelliptic Jacobians. Currents trends in number theory (Allahabad, 2000), 101–110, Hindustan Book Agency, New Delhi, 2002. Zbl1092.14508MR1925645
  17. J. Oesterlé,Torsion des courbes elliptiques sur les corps de nombres, preprint. Zbl0737.14004
  18. P. Parent,Borne effectives pour la torsion des courbes elliptiques sur les corps de nombres. J. Reine Angew Math. 503 (1999), 129–160. Zbl0919.11040MR1665681
  19. E.E. Pyle,Abelian varieties over with large endomorphism algebras and their simple components over ¯ . In Modular curves and abelian varieties, Birkhäuser, 2004. Zbl1116.11040MR2058652
  20. J. Quer, -curves and abelian varieties of GL 2 -type. Proc. London Math. Soc. 81 (2000), 285–317. Zbl1035.11026MR1770611
  21. M. Raynaud,Schémas en groupes de type ( p , ... , p ) . Bull. Soc Math. Fr. 102 (1974), 241–280. Zbl0325.14020MR419467
  22. K. Ribet,A modular construction of unramified p -extension of ( μ p ) . Invent. Math. 34 (1976), 151–162. Zbl0338.12003MR419403
  23. J.-P. Serre, J. Tate,Good reduction of abelian varieties. Ann. Math. 88 (1968), 492–517. Zbl0172.46101MR236190
  24. J. Tate,Algorithm for determining the type of a singular fibre in an elliptic pencil. In Modular Function of One Variable IV, Springer-Verlag, 1975. Zbl1214.14020MR393039
  25. T. Yamauchi, On -simple factors of Jacobian varieties of modular curves. Yokohama Math. J. 53 (2007), no. 2, 149–160. Zbl1132.14025MR2302608
  26. L.C. Washington,Introduction to cyclotomic fields. Springer-Verlag New-York, 1997. Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.