Prime factors of class number of cyclotomic fields

Tetsuya Taniguchi[1]

  • [1] Department of Mathematics, Tokyo University of Science, Noda, Chiba 278-8510, Japan

Journal de Théorie des Nombres de Bordeaux (2008)

  • Volume: 20, Issue: 2, page 525-530
  • ISSN: 1246-7405

Abstract

top
Let p be an odd prime, r be a primitive root modulo p and r i r i ( mod p ) with 1 r i p - 1 . In 2007, R. Queme raised the question whether the -rank ( an odd prime p ) of the ideal class group of the p -th cyclotomic field is equal to the degree of the greatest common divisor over the finite field 𝔽 of x ( p - 1 ) / 2 + 1 and Kummer’s polynomial f ( x ) = i = 0 p - 2 r - i x i . In this paper, we shall give the complete answer for this question enumerating a counter-example.

How to cite

top

Taniguchi, Tetsuya. "Prime factors of class number of cyclotomic fields." Journal de Théorie des Nombres de Bordeaux 20.2 (2008): 525-530. <http://eudml.org/doc/10848>.

@article{Taniguchi2008,
abstract = {Let $p$ be an odd prime, $r$ be a primitive root modulo $p$ and $r_\{i\} \equiv r^\{i\} \hspace\{4.44443pt\}(\@mod \; p)$ with $1 \le r_i \le p-1$. In 2007, R. Queme raised the question whether the $\ell $-rank ($\ell $ an odd prime $ \ne p$) of the ideal class group of the $p$-th cyclotomic field is equal to the degree of the greatest common divisor over the finite field $\mathbb\{F\}_\ell $ of $x^\{(p-1)/2\}+1$ and Kummer’s polynomial $f(x) = \sum _\{i=0\}^\{p-2\} r_\{-i\} x^i$. In this paper, we shall give the complete answer for this question enumerating a counter-example.},
affiliation = {Department of Mathematics, Tokyo University of Science, Noda, Chiba 278-8510, Japan},
author = {Taniguchi, Tetsuya},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cyclotomic field; minus class number; rank; class group},
language = {eng},
number = {2},
pages = {525-530},
publisher = {Université Bordeaux 1},
title = {Prime factors of class number of cyclotomic fields},
url = {http://eudml.org/doc/10848},
volume = {20},
year = {2008},
}

TY - JOUR
AU - Taniguchi, Tetsuya
TI - Prime factors of class number of cyclotomic fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2008
PB - Université Bordeaux 1
VL - 20
IS - 2
SP - 525
EP - 530
AB - Let $p$ be an odd prime, $r$ be a primitive root modulo $p$ and $r_{i} \equiv r^{i} \hspace{4.44443pt}(\@mod \; p)$ with $1 \le r_i \le p-1$. In 2007, R. Queme raised the question whether the $\ell $-rank ($\ell $ an odd prime $ \ne p$) of the ideal class group of the $p$-th cyclotomic field is equal to the degree of the greatest common divisor over the finite field $\mathbb{F}_\ell $ of $x^{(p-1)/2}+1$ and Kummer’s polynomial $f(x) = \sum _{i=0}^{p-2} r_{-i} x^i$. In this paper, we shall give the complete answer for this question enumerating a counter-example.
LA - eng
KW - cyclotomic field; minus class number; rank; class group
UR - http://eudml.org/doc/10848
ER -

References

top
  1. Tom M. Apostol, Resultants of cyclotomic polynomials, Proc. Amer. Math. Soc. 24 (1970), 457-462 Zbl0188.34002MR251010
  2. H. Kisilevsky, Olga Taussky-Todd’s work in class field theory, Pacific J. Math. (1997), 219-224 Zbl1011.11002
  3. Eduard Ernst Kummer, Bestimmung der Anzahl nicht äquivalenter Classen für die aus λ ten Wurzeln der Einheit gebildeten complexen Zahlen und die idealen Factoren derselben, J. Reine Angew. Math. 40 (1850), 43-116 
  4. D. H. Lehmer, Prime factors of cyclotomic class numbers, Math. Comp. 31 (1977), 599-607 Zbl0357.12006MR432589
  5. M. Pohst, H. Zassenhaus, Algorithmic algebraic number theory, 30 (1997), Cambridge Univ. Press, Cambridge Zbl0685.12001MR1483321
  6. René Schoof, Minus class groups of the fields of the l th roots of unity, Math. Comp. 67 (1998), 1225-1245 Zbl0902.11043MR1458225
  7. Tetsuya Taniguchi, Program codes of “Prime factors of class number of cyclotomic fields” Zbl1163.11078
  8. Lawrence C. Washington, Introduction to cyclotomic fields, (1997), Springer-Verlag, New York, 2nd ed. Zbl0966.11047MR1421575

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.