A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism

Giuliana Gnani; Giuliano Mazzanti

Rendiconti del Seminario Matematico della Università di Padova (1999)

  • Volume: 101, page 39-49
  • ISSN: 0041-8994

How to cite

top

Gnani, Giuliana, and Mazzanti, Giuliano. "A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism." Rendiconti del Seminario Matematico della Università di Padova 101 (1999): 39-49. <http://eudml.org/doc/108490>.

@article{Gnani1999,
author = {Gnani, Giuliana, Mazzanti, Giuliano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Boolean algebras with an endomorphism operator; fixed point},
language = {eng},
pages = {39-49},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism},
url = {http://eudml.org/doc/108490},
volume = {101},
year = {1999},
}

TY - JOUR
AU - Gnani, Giuliana
AU - Mazzanti, Giuliano
TI - A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 101
SP - 39
EP - 49
LA - eng
KW - Boolean algebras with an endomorphism operator; fixed point
UR - http://eudml.org/doc/108490
ER -

References

top
  1. [1] C. Bernardi, The uniqueness of the fixed point in every diagonalizable algebra, Studia Logica, 35 (1976), pp. 335-343. Zbl0345.02020MR460115
  2. [2] W.J. Blok, The lattice of modal logics: an algebraic investigation, J. Symbolic Logic, 45, no. 2 (1980), pp. 221-236. Zbl0436.03010MR569394
  3. [3] G. Boolos, TheLogic of Provability, Cambridge University Press (1993). Zbl0891.03004MR1260008
  4. [4] S. Burris - H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York (1981). Zbl0478.08001MR648287
  5. [5] S. Feferman, Formal consistency proofs and interpretability theories, Dissertation, Berkeley (1957). Zbl0201.32501
  6. [6] H. Friedman - M. Sheard, An axiomatic approach to self-referential truth, Ann. Pure Appl. Logic, 33 (1987), pp. 1-21. Zbl0634.03058MR870684
  7. [7] V. Halbach, A system of complete and consistent truth, Notre Dame Journal Of Formal Logic, Vol. 35, no. 3 (1984), pp. 311-327. Zbl0828.03030MR1326116
  8. [8] P.R. Halmos, Algebraic Logic, Chelsea, New York (1962). Zbl0101.01101MR131961
  9. [9] D. Hobby, Finite fixed point algebras are subdiagonalisable, Algebra Universalis, vol. 25 (1988), pp. 210-222. Zbl0627.06013MR950746
  10. [10] B. Jonsson - A. Tarski, Boolean algebras with operators. Part I, Amer. J. Math., vol. 73 (1951), pp. 891-939. Zbl0045.31505MR44502
  11. [11] B. Jonsson - A. Tarski, Boolean algebras with operators. Part II, Amer. J. Math., vol. 74 (1952), pp. 127-162. Zbl0045.31601MR45086
  12. [12] R. Magari, The diagonalizable algebras, Boll. Un. Mat. Ital., (4) 12, suppl. fasc. 3 (1975), pp. 117-125. Zbl0352.08009MR460109
  13. [13] F. Montagna, The diagonalizable algebras, Rapporto matematico, n. 107 (1984), Dip. Mat. Siena. 
  14. [14] F. Montagna, A Completeness results for fixed-point algebras, Z. Math. Logik Grundlag, Math., 30 (1984), no. 6, pp. 525-532. Zbl0564.03044MR769645
  15. [15] I. Nemeti, Algebraizations of quantifier Logics: an introductory overview, Studia Logica, 50 (1991), pp. 445-556. Zbl0772.03033MR1170186
  16. [16] G. Sambin, An effective fixed-point theorem in intuitionistic diagonalizable algebras, Studia Logica, 35 (1976), pp. 345-361. Zbl0357.02028MR460116
  17. [17] C. Smorynski, Fixed point algebras, Bull. Of TheAmer. Math. Soc., 6 (1982), pp. 317-356. Zbl0544.03032MR648523
  18. [18] C. Smorynski, Self-reference and modal logic, Universitext, Springer-Verlag (1985). Zbl0596.03001MR807778
  19. [19] R. Solovay, Provability interpretations of modal logics, Israel Journal Of Mat., 25 (1976), pp. 287-304. Zbl0352.02019MR457153
  20. [20] W. Taylor, Fixed points of endomorphisms, Algebra Universalis, vol. 2 (1972), pp. 74-76. Zbl0263.08004MR306090
  21. [21] A. Tarski, A lattice theoretical fixed-point theorem and applications, Pacific J. Math., 5 (1955), pp. 285-309. Zbl0064.26004MR74376
  22. [22] A. Ursini, Sulla varietà di algebre con una buona teoria degli ideali, Boll. Un. Mat. Ital., (4) 6 (1972), pp. 90-95. Zbl0263.08006MR314728

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.