A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism
Giuliana Gnani; Giuliano Mazzanti
Rendiconti del Seminario Matematico della Università di Padova (1999)
- Volume: 101, page 39-49
- ISSN: 0041-8994
Access Full Article
topHow to cite
topGnani, Giuliana, and Mazzanti, Giuliano. "A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism." Rendiconti del Seminario Matematico della Università di Padova 101 (1999): 39-49. <http://eudml.org/doc/108490>.
@article{Gnani1999,
author = {Gnani, Giuliana, Mazzanti, Giuliano},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Boolean algebras with an endomorphism operator; fixed point},
language = {eng},
pages = {39-49},
publisher = {Seminario Matematico of the University of Padua},
title = {A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism},
url = {http://eudml.org/doc/108490},
volume = {101},
year = {1999},
}
TY - JOUR
AU - Gnani, Giuliana
AU - Mazzanti, Giuliano
TI - A note on the fixed point for the polynomials of a boolean algebra with an operator of endomorphism
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 1999
PB - Seminario Matematico of the University of Padua
VL - 101
SP - 39
EP - 49
LA - eng
KW - Boolean algebras with an endomorphism operator; fixed point
UR - http://eudml.org/doc/108490
ER -
References
top- [1] C. Bernardi, The uniqueness of the fixed point in every diagonalizable algebra, Studia Logica, 35 (1976), pp. 335-343. Zbl0345.02020MR460115
- [2] W.J. Blok, The lattice of modal logics: an algebraic investigation, J. Symbolic Logic, 45, no. 2 (1980), pp. 221-236. Zbl0436.03010MR569394
- [3] G. Boolos, TheLogic of Provability, Cambridge University Press (1993). Zbl0891.03004MR1260008
- [4] S. Burris - H.P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, New York (1981). Zbl0478.08001MR648287
- [5] S. Feferman, Formal consistency proofs and interpretability theories, Dissertation, Berkeley (1957). Zbl0201.32501
- [6] H. Friedman - M. Sheard, An axiomatic approach to self-referential truth, Ann. Pure Appl. Logic, 33 (1987), pp. 1-21. Zbl0634.03058MR870684
- [7] V. Halbach, A system of complete and consistent truth, Notre Dame Journal Of Formal Logic, Vol. 35, no. 3 (1984), pp. 311-327. Zbl0828.03030MR1326116
- [8] P.R. Halmos, Algebraic Logic, Chelsea, New York (1962). Zbl0101.01101MR131961
- [9] D. Hobby, Finite fixed point algebras are subdiagonalisable, Algebra Universalis, vol. 25 (1988), pp. 210-222. Zbl0627.06013MR950746
- [10] B. Jonsson - A. Tarski, Boolean algebras with operators. Part I, Amer. J. Math., vol. 73 (1951), pp. 891-939. Zbl0045.31505MR44502
- [11] B. Jonsson - A. Tarski, Boolean algebras with operators. Part II, Amer. J. Math., vol. 74 (1952), pp. 127-162. Zbl0045.31601MR45086
- [12] R. Magari, The diagonalizable algebras, Boll. Un. Mat. Ital., (4) 12, suppl. fasc. 3 (1975), pp. 117-125. Zbl0352.08009MR460109
- [13] F. Montagna, The diagonalizable algebras, Rapporto matematico, n. 107 (1984), Dip. Mat. Siena.
- [14] F. Montagna, A Completeness results for fixed-point algebras, Z. Math. Logik Grundlag, Math., 30 (1984), no. 6, pp. 525-532. Zbl0564.03044MR769645
- [15] I. Nemeti, Algebraizations of quantifier Logics: an introductory overview, Studia Logica, 50 (1991), pp. 445-556. Zbl0772.03033MR1170186
- [16] G. Sambin, An effective fixed-point theorem in intuitionistic diagonalizable algebras, Studia Logica, 35 (1976), pp. 345-361. Zbl0357.02028MR460116
- [17] C. Smorynski, Fixed point algebras, Bull. Of TheAmer. Math. Soc., 6 (1982), pp. 317-356. Zbl0544.03032MR648523
- [18] C. Smorynski, Self-reference and modal logic, Universitext, Springer-Verlag (1985). Zbl0596.03001MR807778
- [19] R. Solovay, Provability interpretations of modal logics, Israel Journal Of Mat., 25 (1976), pp. 287-304. Zbl0352.02019MR457153
- [20] W. Taylor, Fixed points of endomorphisms, Algebra Universalis, vol. 2 (1972), pp. 74-76. Zbl0263.08004MR306090
- [21] A. Tarski, A lattice theoretical fixed-point theorem and applications, Pacific J. Math., 5 (1955), pp. 285-309. Zbl0064.26004MR74376
- [22] A. Ursini, Sulla varietà di algebre con una buona teoria degli ideali, Boll. Un. Mat. Ital., (4) 6 (1972), pp. 90-95. Zbl0263.08006MR314728
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.