Tensor fields of type (0,2) on linear frame bundles and cotangent bundles

Guillermo G. R. Keilhauer

Rendiconti del Seminario Matematico della Università di Padova (2000)

  • Volume: 103, page 51-64
  • ISSN: 0041-8994

How to cite

top

Keilhauer, Guillermo G. R.. "Tensor fields of type (0,2) on linear frame bundles and cotangent bundles." Rendiconti del Seminario Matematico della Università di Padova 103 (2000): 51-64. <http://eudml.org/doc/108528>.

@article{Keilhauer2000,
author = {Keilhauer, Guillermo G. R.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {linear frame bundle; cotangent bundle; natural -tensor field},
language = {eng},
pages = {51-64},
publisher = {Seminario Matematico of the University of Padua},
title = {Tensor fields of type (0,2) on linear frame bundles and cotangent bundles},
url = {http://eudml.org/doc/108528},
volume = {103},
year = {2000},
}

TY - JOUR
AU - Keilhauer, Guillermo G. R.
TI - Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2000
PB - Seminario Matematico of the University of Padua
VL - 103
SP - 51
EP - 64
LA - eng
KW - linear frame bundle; cotangent bundle; natural -tensor field
UR - http://eudml.org/doc/108528
ER -

References

top
  1. [1] M. Del C. Calvo - G.G.R. Keilhauer, Tensor fields of type (0,2) on the tangent bundle of a Riemannian manifold, Geom. Dedicata, 71 (1998), pp. 209-219. Zbl0921.53013MR1629795
  2. [2] D. Gromoll - W. KLINGENBERG - W. MEYER, Riemannsche Geometrie im Großen, Springer, Lecture Notes in Maths, 55 (1968). Zbl0293.53001MR229177
  3. [3] I Kolář, P. Michor - J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993. Zbl0782.53013MR1202431
  4. [4] O. Kowalski - M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles - A classification. Differential Geometry and Its Applications, Proc. Conf. August 24-30, 1986, Brno, Czechoslovakia (edited by D. Krupka and A. Švec. A), pp. 149-178. J. E. Purkynĕ University, Brno (1987). Zbl0632.53040MR923348
  5. [5] D. Krupka - J. Janyška, Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990. Zbl0752.53004MR1108622
  6. [6] M. Sekizawa, Natural transformations of symmetric affine connections on manifolds to metrics on linear frame bundles: a classification, Mh. Math., 105 (1988), pp. 229-243. Zbl0639.53022MR939945
  7. [7] M. Sekizawa, Natural transformactions of affine connections on manifolds to metrics on cotangent bundles, Rendi. Cir. Mat. Palermo Serie II, 14 (1987), pp. 129-142. Zbl0635.53012MR920851

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.