Tensor fields of type (0,2) on linear frame bundles and cotangent bundles
Rendiconti del Seminario Matematico della Università di Padova (2000)
- Volume: 103, page 51-64
- ISSN: 0041-8994
Access Full Article
topHow to cite
topReferences
top- [1] M. Del C. Calvo - G.G.R. Keilhauer, Tensor fields of type (0,2) on the tangent bundle of a Riemannian manifold, Geom. Dedicata, 71 (1998), pp. 209-219. Zbl0921.53013MR1629795
- [2] D. Gromoll - W. KLINGENBERG - W. MEYER, Riemannsche Geometrie im Großen, Springer, Lecture Notes in Maths, 55 (1968). Zbl0293.53001MR229177
- [3] I Kolář, P. Michor - J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993. Zbl0782.53013MR1202431
- [4] O. Kowalski - M. Sekizawa, Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles - A classification. Differential Geometry and Its Applications, Proc. Conf. August 24-30, 1986, Brno, Czechoslovakia (edited by D. Krupka and A. Švec. A), pp. 149-178. J. E. Purkynĕ University, Brno (1987). Zbl0632.53040MR923348
- [5] D. Krupka - J. Janyška, Lectures on Differential Invariants, Folia Fac. Sci. Nat. Univ. Purkynianae Brunensis, Brno, 1990. Zbl0752.53004MR1108622
- [6] M. Sekizawa, Natural transformations of symmetric affine connections on manifolds to metrics on linear frame bundles: a classification, Mh. Math., 105 (1988), pp. 229-243. Zbl0639.53022MR939945
- [7] M. Sekizawa, Natural transformactions of affine connections on manifolds to metrics on cotangent bundles, Rendi. Cir. Mat. Palermo Serie II, 14 (1987), pp. 129-142. Zbl0635.53012MR920851